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A Discrepancy between estimators of ∆IMin
NI

The minimum information loss ∆IMin
NI attainable by NI decoders has been estimated in several different

ways. In Eyherabide and Samengo (2013), we analysed four different estimators and showed that all

of them overestimate ∆IMin
NI in a context dependent manner, and none of them constitutes a universal

bound neither to ∆IMin
NI nor to the importance of noise correlations in neural decoding. Here we show

a detailed analysis of the divergence between these approaches using the example shown in Figure 1A

of Eyherabide and Samengo (2013). This example shows the responses R = [R1,R2] of a population

of two neurons elicited by each of two stimuli S 1 and S 2. The joint probabilities P(R1,R2, S 1) and

P(R1,R2, S 2) are given by Table S-1, where α̂ = 1 − α, β̂ = 1 − β, and p̂ = 1 − p, being α, β and p

constants with arbitrary real values between 0 and 1.

P(R1,R2, S 1)
R1

L M H

R2

H 0 0 0

M α p 0 0

L 0 α̂ p 0

P(R1,R2, S 2)
R1

L M H

R2

H 0 0 β̂ p̂

M 0 β p̂ 0

L 0 0 0

Table S-1. Joint stimulus-response probabilities P(R1,R2, S ) for the example shown in Figure 1A of Eyherabide
and Samengo (2013).

The posterior probability P(S k|R1,R2) (k being 1 or 2) can be calculated using Bayes’ rule

P(S k|R1,R2) =
P(R1,R2, S k)∑
k̃ P(R1,R2, S k̃)

, (S-1)

The values of P(S k|R1,R2) for the example analysed here are given in Table S-2.

P(S 1|R1,R2)
R1

L M H

R2

H 0 0 0

M 1 0 0

L 0 1 0

P(S 2|R1,R2)
R1

L M H

R2

H 0 0 1

M 0 1 0

L 0 0 0

Table S-2. Posterior probabilities P(S |R1,R2) for the example given in Figure 1A and the joint stimulus-
response probabilities P(R1,R2, S ) of Table S-1.
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The noise-independent (NI) posterior distribution PNI(S |R1,R2) can be obtained using Eq. 5 in

Eyherabide and Samengo (2013). The values of PNI(S |R1,R2) for the example analysed here are

given in Table S-4, where γ =

(
1 + Φ

p
p̂

)−1

, Φ =
α α̂

β2 and γ̂ = 1 − γ.

PNI(S 1|R1,R2)
R1

L M H

R2

H 0 0 0

M 1 γ̂ 0

L 1 1 0

PNI(S 2|R1,R2)
R1

L M H

R2

H 0 1 1

M 0 γ 1

L 0 0 0

Table S-3. Noise-independent posterior probabilities PNI(S |R1,R2) for the example given in Figure 1A and the
joint stimulus-response probabilities P(R1,R2, S ) of Table S-1.

From Table S-2 it is clear that a decoder based on P(S k|R1,R2) and using a maximum posterior

criterion (that is, a decoder which output is the most likely stimulus given the population response) is

capable of decoding without error. In other words, knowledge of noise correlations are sufficient

to decode without error. Yet they may not be necessary. A decoder based on the NI posterior

probability PNI(S |R1,R2), and hence without knowledge of noise correlations, may decode without

error as well. In that case, noise correlations are not necessary for optimal decoding. The NI posterior

probability PNI(S |R1,R2), however, differs from the real posterior distribution P(S |R1,R2) for four

different population responses [R1,R2], namely: [L, L], [M,M], [H,M], and [M,H]. Out of these four

population responses, only response [M,M] actually occurs with non-zero probability (P(M,M) > 0),

and therefore is the only one that can induce a discrepancy between decoders constructed with and

without knowledge of noise correlations.

A.1 Estimation the minimum information loss using ∆ID
NI

Here we provide the exact formula of the estimator ∆ID
NI (Nirenberg et al., 2001; Nirenberg and

Latham, 2003) for the example shown in Figure 1A of Eyherabide and Samengo (2013). To that

end, recall the estimators of the minimum information loss induced by NI decoders defined in Eq.

8 of Eyherabide and Samengo (2013). Using the probabilities given in Tables S-1, S-2 and S-3, the
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value of ∆ID
NI is given by

∆ID
NI = D [P(R1,R2, S )||PNI(S |R1,R2)] (S-2a)

=
∑

S ,R1,R2

P(S ,R1,R2) log2
P(S |R1,R2)

PNI(S |R1,R2)
(S-2b)

=

0︷                                  ︸︸                                  ︷
P(M, L, S 1) log2

1︷          ︸︸          ︷
P(S 1|M, L)

PNI(S 1|M, L)
+

0︷                                  ︸︸                                  ︷
P(L,M, S 1) log2

1︷           ︸︸           ︷
P(S 1|L,M)

PNI(S 1|L,M)
+

+ P(M,M, S 2) log2
P(S 2|M,M)

PNI(S 2|M,M)︸            ︷︷            ︸1+Φ
p
p̂


+ P(H,H, S 2) log2

P(S 2|H,H)
PNI(S 2|H,H)︸           ︷︷           ︸

1︸                                  ︷︷                                  ︸
0

(S-2c)

= β p̂ log2

(
1 + Φ

p
p̂

)
(S-2d)

where D is the Kullback-Leibler divergence (Cover and Thomas, 1991). ∆ID
NI is almost always greater

than zero, except when any of p, α and β are 0 or 1 (when p is 0 or 1, the amount of encoded

information is zero).

A.2 Estimation the minimum information loss using ∆IDL
NI

Here we provide the exact formula of the estimator ∆IDL
NI (Latham and Nirenberg, 2005; Oizumi et al.,

2010) for the example shown in Figure 1A of Eyherabide and Samengo (2013). The calculation of

∆IDL
NI is somewhat tricky, because in their original form, the quantities involved in its calculation are

not well defined. In this section, we show how to resolve these issues for the example of Figure 1A.

The correct definitions of the quantities involved in the calculation of ∆IDL
NI are derived in Section B.

The first step in the calculation of ∆IDL
NI is to calculate ∆ĨDL

NI (θ) in a similar manner to ∆ID
NI . Next,

one needs to minimize ∆ĨDL
NI (θ) over the parameter θ (θ is a real number). The quantity ∆ĨDL

NI (θ) is
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defined as

∆ĨDL
NI (θ) = D[P(S |R1,R2)||P̃(S |R1,R2, θ)] , (S-3)

where P̃(S k|R1,R2, θ) is given by

P̃(S k|R1,R2, θ) =

P(S k)
(
P(R1|S k) P(R2|S k)

)θ
∑

k̃

P(S k̃)
(
P(R1|S k̃) P(R2|S k̃)

)θ . (S-4)

Unfortunately, this definition of P̃(S k|R1,R2, θ) is invalid when θ is zero or negative and some P(Rn|S k)

is zero for responses that occur with P(R1,R2) greater than zero (n is the index of the neuron in the

population and k is the index of the stimulus). This is the case of responses [M, L], [L,M] and [H,H].

Luckily, a more general definition can be derived, as we do in the next section (Eqs. S-22 and S-23).

In the example under study, this results in

P̃(S 1|M, L, θ) =
p α̂2θ

p α̂2θ = 1 (S-5a)

P̃(S 1|L,M, θ) =
pα2θ

pα2θ = 1 (S-5b)

P̃(S 2|M,M, θ) =
p̂ β2θ

p α̂ αθ + p̂ β2θ =

(
1 + Φθ p

p̂

)−1

(S-5c)

P̃(S 2|H,H, θ) =
p̂ β̂2θ

p β̂2θ
= 1 . (S-5d)

∆ĨDL
NI (θ) can be calculated as follows

∆ĨDL
NI (θ) = D

[
P(R1,R2, S )||P̃(S |R1,R2, θ)

]
(S-6a)

=
∑

S ,R1,R2

P(S ,R1,R2) log2
P(S |R1,R2)

P̃(S |R1,R2, θ)
(S-6b)

=

0︷                                  ︸︸                                  ︷
P(M, L, S 1) log2

1︷           ︸︸           ︷
P(S 1|M, L)

P̃(S 1|M, L, θ)
+

0︷                                  ︸︸                                  ︷
P(L,M, S 1) log2

1︷           ︸︸           ︷
P(S 1|L,M)

P̃(S 1|L,M, θ)
+
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+ P(M,M, S 2) log2
P(S 2|M,M)

P̃(S 2|M,M, θ)︸            ︷︷            ︸(
1 + Φθ p

p̂

) + P(H,H, S 2) log2
P(S 2|H,H)

P̃(S 2|H,H, θ)︸           ︷︷           ︸
1︸                                  ︷︷                                  ︸

0

(S-6c)

= β p̂ log2

(
1 + Φθ p

p̂

)
. (S-6d)

The estimator ∆IDL
NI is obtained by minimizing ∆ĨDL

NI (θ) with respect to θ (Eq. 8d). There are three

possible cases depending on the value of Φ:

i) Φ < 1, in which case ∆ĨDL
NI (θ) tends to zero as θ tends to infinity;

ii) Φ = 1, in which case ∆ĨDL
NI (θ) is constant and equal to ∆ID

NI; and

iii) Φ > 1, in which case ∆ĨDL
NI (θ) tends to zero as θ tends to minus infinity.

As a results, ∆IDL
NI is given by

∆IDL
NI =

0 Φ , 1
∆ID

NI Φ = 1
. (S-7)

A.3 Estimation the minimum information loss using MAP NI decoders

Consider a specific implementation of the noise-independent (NI) decoder using the maximum a-

posteriori criterion (MAP). This NI decoder, here called MAP NI decoder, was defined in Eq. 7

of Eyherabide and Samengo (2013), and for each population response, selects the stimulus with the

greatest NI posterior probability PNI(S |R1,R2), that is

S MAP
NI = arg max

S
PNI(S |R1,R2) . (S-8)

The NI posterior probabilities PNI(S |R1,R2) were calculated in Table S-3. The only population re-

sponse for which the MAP NI decoder can make an error is [R1,R2] = [M,M], and this will occur
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only when PNI(S 2|M,M) < PNI(S 1|M,M). Therefore, when

PNI(S 2|M,M) ≥ PNI(S 1|M,M) , (S-9)

the MAP NI decoder is optimal (∆INI = 0; also ∆ILS
NI = 0, defined in Eq. 8b of Eyherabide and

Samengo, 2013) and decodes with no error. It may not be obvious why the MAP NI decoder can be

optimal when PNI(S 2|M,M) = PNI(S 1|M,M). Indeed, in this case there is no preference for either

stimuli, but the decoder must still choose a stimulus as its output. Therefore, there are several possible

MAP NI decoders, depending on how this choice is made. One possibility is to select randomly

one of the two stimuli every time PNI(S 2|R1,R2) = PNI(S 2|R1,R2) for any population response,

and this strategy of course results in a suboptimal decoder. Another possibility is that, whenever

PNI(S 2|R1,R2) = PNI(S 2|R1,R2), the MAP NI decoder chooses stimulus S 2. Such MAP NI decoder is

optimal.

The condition for the optimality of the MAP NI decoder (Eq. S-9) can also be written as

Φ ≤
p̂
p
. (S-10)

Comparing with Eq. S-7, we find that in the region

p ≤ p̂ and α α̂ = β2 , (S-11)

the classical NI decoder is optimal, even though ∆IDL
NI > 0.

A.4 Estimation the minimum information loss using ML NI decoders

One could also construct a specific implementation of the noise-independent (NI) decoder using

the maximum likelihood criterion (ML), as opposed to the maximum a-posteriori (MAP). This NI

decoder, here called ML NI decoder, is one among many other canonical NI decoders defined in Eq.

4 of Eyherabide and Samengo (2013), and for each population response, selects the stimulus with the
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highest NI likelihood PNI(R1,R2|S ), that is

S ML
NI = arg max

S
PNI(R1,R2|S ) . (S-12)

The NI likelihoods PNI(R1,R2|S ) for the example analysed in this section are given in Table S-3.

Analogously to the MAP NI decoder, the only population response for which the ML NI decoder can

PNI(R1,R2|S 1)
R1

L M H

R2

H 0 0 0

M α2 α α̂ 0

L α α̂ α̂2 0

PNI(R1,R2|S 2)
R1

L M H

R2

H 0 β β̂ β̂2

M 0 β2 β β̂

L 0 0 0

Table S-4. Noise-independent likelihoods PNI(R1,R2|S ) for the example given in Figure 1A and the joint
stimulus-response probabilities P(R1,R2, S ) of Table S-1.

make an error is [R1,R2] = [M,M], and this will occur only when PNI(M,M|S 2) < PNI(M,M|S 1).

Therefore, when

PNI(M,M|S 2) ≥ PNI(M,M|S 1) , (S-13)

the ML NI decoder is optimal (∆INI = 0; also ∆ILS
NI = 0) and decodes with no error. The condition for

the optimality of the ML NI decoder (Eq. S-13) can also be written as

Φ ≤ 1 . (S-14)

Comparing with Eq. S-7, we find that the ML NI decoder is optimal even though ∆IDL
NI > 0.

Comparing Eqs. S-10 and S-14, we find that whenever

Φ ≤ max
(
1,

p̂
p

)
, (S-15)

the MAP NI decoder or ML NI decoder is optimal (or both). These two implementations, however, are

only two among all possible implementations of canonical NI decoders. Different implementations

with optimal performance may exist for cases in which Eq. S-15 does not hold.
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To answer whether optimal implementations of the canonical NI decoder exist, we quantified in

Eyherabide and Samengo (2013) the exact value of the minimum information loss ∆IMin
NI attainable

by NI decoders. We proved that the value of ∆IMin
NI is equal to the value of ∆INIL

NI , defined in Eq. 21.

In Section C of this document we show that, the minimum information loss ∆INIL
NI is zero for any

values of the joint stimulus-response probabilities P(R1,R2, S ) given in Table S-1. Therefore, all four

criteria described in Eq. 8 of Eyherabide and Samengo (2013) overestimate ∆IMin
NI and, ultimately, the

importance of noise correlations.

B Characterization of the estimation ∆IDL
NI

Latham and Nirenberg (2005) introduced ∆IDL
NI as an estimator of the minimum information loss

∆IMin
NI . As it was defined, however, this estimator and its putative properties are only valid for the

subset of all possible population responses where marginal probabilities are greater than zero for all

stimuli. This is the case of the example shown in Figure 1A of Eyherabide and Samengo (2013). In

this section, we extend its definition to all possible population responses and reassessed the validity

of its properties.

B.1 Shortcomings in the estimation of ∆IDL
NI

The estimator ∆IDL
NI (Latham and Nirenberg, 2005; Oizumi et al., 2010) is obtained by minimizing

∆ĨDL
NI (θ) over the parameter θ (Eq. 8d of Eyherabide and Samengo, 2013)

∆IDL
NI = min

θ
∆ĨDL

NI (θ) , (S-16)

where θ can take any real value. The quantity ∆ĨDL
NI (θ) (Eq. 9a of Eyherabide and Samengo, 2013) is

given by

∆ĨDL
NI (θ) = D[P(S |R)||P̃(S |R, θ)] , (S-17)
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R = [R1, . . . ,RN] representing the response of a population of N neurons, and P̃(S |R, θ) (Eq. 9b of

Eyherabide and Samengo, 2013) given by

P̃(S |R, θ) =

P(S )
(∏

n

P(Rn|S )
)θ

∑
Ŝ

P(Ŝ )
(∏

n

P(Rn|Ŝ )
)θ . (S-18)

Unfortunately, this definition of P̃(S |R, θ), given in Latham and Nirenberg (2005) and Oizumi et al.

(2010), is not valid when θ is not positive and the population response R involved in the calculation

gives rise to marginal probabilities P(Rn|S k) that vanish for at least one neuron of index n and one

stimulus S k.

Recall the example shown in Figure 1A of Eyherabide and Samengo (2013). Response [R1,R2] =

[H,H] is associated with the following marginal probabilities

P(R1 = H|S 1) = 0 P(R2 = H|S 1) = 0 (S-19a)

P(R1 = H|S 2) = β̂ P(R2 = H|S 2) = β̂ , (S-19b)

which are derived using Table S-1. According to Eq. S-18, P̃(S 1|H,H, θ) is given by

P̃(S 1|H,H, θ) =

P(S 1)
(
P(R1|S 1) P(R2|S 1)

)θ
P(S 1)

(
P(R1|S 1) P(R2|S 1)

)θ
+ P(S 2)

(
P(R1|S 2) P(R2|S 2)

)θ (S-20a)

=
P(S 1) 0θ

P(S 1) 0θ + P(S 2) β̂2θ
. (S-20b)

When θ = 0 and when θ < 0, this equation is indeterminate (indeterminations of type 00 and ∞

∞
,

respectively).

To resolve this problem, we took a look at the derivation of Eq. S-18 in Latham and Nirenberg
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(2005). There, Eq. B13a states that P̃(S |R, θ) must satisfy the following constraint

E
P̃(R1,R2,S k ,θ)

[
log2

(
P(R1|S k) P(R2|S k)

)]
= E

P(R1,R2,S k)

[
log2

(
P(R1|S k) P(R2|S k)

)]
. (S-21)

This constraint can be satisfied if and only if P̃(S k|R1,R2, θ) is zero whenever P(R1|S k) or P(R2|S k)

are zero. More generally, P̃(S k|R, θ) must be zero whenever the marginal probability P(Rn|S k) is zero

for some neuron Rn in the population. A more general definition of P̃(S k|R, θ) is therefore given by

P̃(S |R, θ = 0) =



P(S )
(∏

n

P(Rn|S )
)θ

∑
Ŝ

P(Ŝ )
(∏

n

P(Rn|Ŝ )
)θ if

∏
n

P(Rn|S ) > 0 (S-22)

0 if
∏

n

P(Rn|S ) = 0 (S-23)

where the sum extends over all Ŝ for which
∏

n P(Rn|Ŝ ) > 0. Notice that Eq. S-23 is not redundant

with Eq. S-22 because the latter is not valid when
∏

n P(Rn|S ) = 0 and θ ≤ 0.

B.2 Putative stimulus-response independence when θ is zero

Latham and Nirenberg (2005) argued that when θ = 0, stimuli and responses become independent,

and thus ∆ĨDL
NI (θ) (Eq. S-17 and Eq. 9a in Eyherabide and Samengo, 2013) approaches is maximum

value, i.e. the encoded information. This argument, however, does not take into account that P̃(S |R, θ)

is not well defined by Eq. S-18 when
∏

n P(Rn|S ) = 0 and θ ≤ 0. Using Eq. B.1, we find that

P̃(S |R, θ = 0) =



P(S )∑
Ŝ

P(Ŝ )
if

∏
n

P(Rn|S ) > 0 (S-24)

0 if
∏

n

P(Rn|S ) = 0 (S-25)

where the sum extends over all Ŝ for which
∏

n P(Rn|Ŝ ) > 0. Whenever a stimulus Ŝ exists for which∏
n P(Rn|Ŝ ) = 0, the denominator in Eq. S-24 is less than unity, and P̃(S |R, θ = 0) > P(S ). In other

words, stimuli and responses do not become independent, and ∆ĨDL
NI (θ) does not equal the encoded

12



information, but the following quantity

∆ĨDL
NI (θ = 0) = D[P(S |R)||P̃(S |R, θ = 0)] (S-26a)

= E
P(S ,R)

[
log2

P(S |R)
P̃(S |R, θ = 0)

]
(S-26b)

= E
P(S ,R)

[
log2 P(S |R)

]
︸                  ︷︷                  ︸

−H(S |R)

− E
P(S ,R)

log2

[
P̃(S |R, θ = 0)

]
(S-26c)

= −H(S |R) − E
P(S ,R)

[
log2

P(S )∑
Ŝ

P(Ŝ )

]
(S-26d)

= −H(S |R) − E
P(S ,R)

[
log2 P(S )

]
︸               ︷︷               ︸

−H(S )

+ E
P(S ,R)

[
log2

∑
Ŝ

P(Ŝ )
]

(S-26e)

= −H(S |R) + H(S )︸               ︷︷               ︸
I(R, S )

+ E
P(S ,R)

[
log2

∑
Ŝ

P(Ŝ )
]

(S-26f)

= I(R, S ) + E
P(S ,R)

[
log2

∑
Ŝ

P(Ŝ )
]

︸                    ︷︷                    ︸
< 0

(S-26g)

< I(R, S ) , (S-26h)

where I(R, S ) is the encoded information. In consequence, the putative independence between stimuli

and responses for θ = 0 ought to be handled with caution, as its validity depends on whether or not a

stimulus S exists for which
∏

n P(Rn|S ) > 0 for some population response R that occurs with nonzero

probability P(R) > 0.

B.3 Uniqueness of the minimum of ∆ĨDL
NI (θ)

Latham and Nirenberg (2005) also stated that ∆ĨDL
NI (θ) has a single minimum, except when population

responses are deterministic. However, in section A we showed that, when Φ = 1, ∆ĨDL
NI (θ) = ∆ID

NI

for responses that are not deterministic (i.e. a constant for all θ; page 7). In other words, we showed
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that the minimum of ∆ĨDL
NI (θ) may not be unique for stochastic stimulus-response mappings as well.

Indeed, when PNI(R|S ) is constant (like in Figure 1A of Eyherabide and Samengo, 2013 with equal

response probabilities), then

∂∆ĨDL
NI (θ)
∂θ

= E
P̃(S ,R,θ)

log2 PNI(R|S ) − E
P(S ,R)

log2 PNI(R|S ) = 0 . (S-27)

Thus, ∆ĨDL
NI (θ) is constant and independent of θ, even though responses were stochastic.

C Representations RNIL and RNIP

In this section, we extend the analysis of the examples shown in Figures 4 and 5 of Eyherabide

and Samengo (2013) to all possible values of the joint probabilities P(R1,R2, S ). Recall that the

representation RNIL and RNIP of the population responses R = [R1,R2] are obtained using Eqs. 19

and 25 of Eyherabide and Samengo (2013) as follows

RNIL =

[
PNI(R|S 1), PNI(R|S 2)

]
(S-28a)

RNIP =

[
PNI(S 1|R), PNI(S 2|R)

]
. (S-28b)

In Figures 4 and 5, these representations are depicted in the shaded panels.

C.1 Example shown in Figures 4A and 5B

Consider the stimulus and response probabilities like those given in Table S-1. The representations

RNIL and RNIP are given by Table S-5. As a result, responses associated with different stimuli are

always represented in a different manner, both by RNIL and RNIP.
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R −→ RNIL −→ RNIP

[ L ,M] −→ [α2, 0 ] −→ [ 1 , 0 ]

[M , L ] −→ [α̂2, 0 ] −→ [ 1 , 0 ]

[M ,M] −→ [α α̂, β2 ] −→
[ α α̂ p , β2 p̂ ]
α α̂ p + β2 p̂

[ H , H ] −→ [ 0 , β̂2 ] −→ [ 0 , 1 ]

Table S-5. Representations RNIL and RNIP of the population re-
sponse R for example of Figures 4A and 5B.

C.2 Example shown in Figures 4B, 4C and 5C

Consider that the joint probabilities P(R1,R2, S ) for each stimulus S 1 and S 2 and each population

response R = [R1,R2] are given by Table S-6, where α̂ = 1 − α, β̂ = 1 − β, and p̂ = 1 − p. The

P(R, S 1)
R1

L H

R2
H α p 0

L 0 α̂ p

P(R, S 2)
R1

L H

R2
H 0 β p̂

L β̂ p̂ 0

Table S-6. Joint stimulus-response probabilities P(R1,R2, S ) for the example shown in Figures 4B, 4C and 5B
of Eyherabide and Samengo (2013).

representations RNIL and RNIP are given by Table S-7. Population responses associated with different

stimuli are always mapped onto different RNIL, and thus are always represented in a different manner

after the NI assumption, except for α = β = 0.5. This case can be regarded as unique, but if it indeed

occurs, then information is completely lost.

The representation RNIP, however, sometimes merges population responses associated with differ-

ent stimuli. There are two cases where responses are merged: (a) when α = β, in which case, response

[R1,R2] = [L,H] is merged with [L, L], and [H, L] with [H,H]; and (b) when α = β̂, in which

case, response [L,H] is merged with [H,H], and [H, L] with [L, L] (Figure 5C in Eyherabide and

Samengo, 2013) . In both cases, the minimum decoding error ξMin(RNIP, S ) (Eq. 32 of Eyherabide

and Samengo, 2013) and the minimum information loss ∆INIP
NI (Eq. 26 of Eyherabide and Samengo,
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R −→ RNIL −→ RNIP

[ L , H ] −→ [α2 ,β β̂] −→
[ α2 p , β β̂ p̂ ]
α2 p + β β̂ p̂

[ H , L ] −→ [ α̂2 ,β β̂] −→
[ α̂2 p , β β̂ p̂ ]
α̂2 p + β β̂ p̂

[ L , L ] −→ [α α̂, β̂2 ] −→
[ α α̂ p , β̂2 p̂ ]
α α̂ p + β̂2 p̂

[ H , H ] −→ [α α̂, β2 ] −→
[ α α̂ p , β2 p̂ ]
α α̂ p + β2 p̂

Table S-7. Representations RNIL and RNIP of the population re-
sponse R for example of Figures 4B, 4C and 5C.

2013) achieved by classical NI decoders take intermediate values depending on α and p (Figure 6

in Eyherabide and Samengo, 2013). The minimum decoding error (measured as the decoding-error

probability) is given by

∆ξNIP
NI = min {α, α̂, p, p̂} . (S-29)

The information loss was estimated numerically using the codes provided in the Supplementary Mate-

rial. These cases constitute examples where NI decoders can be optimal, but for achieving optimality,

the estimation must be based purely on the NI assumption, that is, on RNIL.

D Data processing inequality for the minimum decoding error

Here we provide more details about the proof of the data processing inequality for the minimum

decoding error ξMin(R; S ) (Eq. 28 in Eyherabide and Samengo, 2013), which states that ξMin(R; S )

increases with transformations of the population response R. Consider a transformation R̃ = g(R).

The minimum decoding error ξMin(R; S ) is given by Eq. 11 of Eyherabide and Samengo (2013),
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namely

ξMin(R; S ) =
∑

R

P(R) min
S Dec

{∑
S

P(S |R)L(S , S Dec)
}
, (S-30)

where S Dec is the decoded stimulus, andL(S , S Dec) is non-negative and represents the cost of decoding

S Dec when the encoded stimulus was S . The probability P(R) can be written as

P(R) =
∑

R̃

P(R, R̃) . (S-31)

Replacing in Eq. S-30 we obtain

ξMin(R; S ) =
∑

R

∑
R̃

P(R, R̃) min
S Dec

{∑
S

P(S |R)L(S , S Dec)
}

(S-32a)

=
∑

R̃

P(R̃)
∑

R

P(R|R̃) min
S Dec

{∑
S

P(S |R)L(S , S Dec)
}
. (S-32b)

This step was taken when passing from Eq. 28a to Eq. 28b. Then, we used the fact that the function

min
X

{
f (X,Y)

}
is concave, that is

min
X

{∑
Y

λY f (X,Y)
}
≥

∑
Y

λY min
X

{
f (X,Y)

}
, (S-33)

for all λY ≥ 0. This can be proved for two terms as follows

min
X

{
λY1 f (X,Y1) + λY2 f (X,Y2)

}
= λY1

≥ min
X

{
f (X,Y1)

}
︷    ︸︸    ︷
f (X0,Y1) +λY2

≥ min
X

{
f (X,Y2)

}
︷    ︸︸    ︷
f (X0,Y2) for some X0 (S-34a)

≥ λY1 min
X

{
f (X,Y1)

}
+ λY2 min

X

{
f (X,Y2)

}
, (S-34b)

and, by induction, the proof can be extended to any number of terms. In Eq. S-32b, the concavity of

min
X

{
f (X,Y)

}
implies that

∑
R

P(R|R̃) min
S Dec

{∑
S

P(S |R)L(S , S Dec)
}
≤ min

S Dec

{∑
R

P(R|R̃)
∑

S

P(S |R)L(S , S Dec)
}
. (S-35)
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Replacing in Eq. S-32b, we obtain

ξMin(R; S ) ≤
∑

R̃

P(R̃) min
S Dec

{∑
R

P(R|R̃)
∑

S

P(S |R)L(S , S Dec)
}

(S-36a)

=
∑

R̃

P(R̃) min
S Dec

{∑
S

P(S |R̃)L(S , S Dec)
}

︸                                              ︷︷                                              ︸
=ξMin(R̃;S )

. (S-36b)

Comparing the right term with Eq. S-30 we find that this is the minimum decoding error ξMin(R̃; S )

that can be attained after the transformation R̃ = g(R), and therefore

ξMin(R; S ) ≤ ξMin(R̃; S ) . (S-37)

This result coincides with Eq. 28d of Eyherabide and Samengo (2013).

E The importance of noise correlations when the response distributions

are Gaussian

Consider that the responses of two neurons R1 and R2 elicited by two stimuli S 1 and S 2 have a two-

dimensional Gaussian distribution N given by

P(R|S k) =
1√

det
(
2 πCk

) e
−

1
2

(
R − µk

)T Ck
–1 (

R − µk
)
, (S-38)

where the population response R, the mean value µk, and the covariance matrices Ck are given by

R =

[
R1

R2

]
µk =

[
µ1k

µ2k

]
Ck =

[
σ2

1k ρ̃k

ρ̃k σ2
2k

]
. (S-39)

Here, µnk and σnk represent the mean value and the variance of the responses of neuron Rn to stimulus

S k, and ρ̃k = ρk σ1k σ2k, being ρk the correlation coefficient of the responses of both neurons elicited

by stimulus S k.
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The NI likelihood (Eq. 3 in Eyherabide and Samengo, 2013) can be written as

PNI(R|S k) =
1√

det
(
2 πCNI

k

) e
−

1
2

(R − µk)T
(
CNI

k

)–1
(R − µk)

, (S-40)

where the noise-independent covariance matrices CNI
k are given by

CNI
k =

[
σ2

1k 0
0 σ2

2k

]
. (S-41)

CNI
k only differs from Ck in the non-diagonal elements.

Recall conditions 24a-c for the optimality of an NI decoder derived in the third section of Results.

Noise correlations are irrelevant for decoding if and only if any two population responses merged after

the NI assumption (i.e. having the same NI likelihoods) are non-informative (and thus, comply with

Eq.23). In the example analysed here, population responses have Gaussian distributions, and hence

two population responses RA = [RA1,RA2] and RB = [RB1,RB2] are merged after the NI assumption if

they comply with

PNI(RA|S k) = PNI(RB|S k) (S-42)

for all k (that is, for k being 1 and 2 in this example). Replacing by Eq. S-40 we obtain

(RA − µk)T
(
CNI

k

)–1
(RA − µk) = (RB − µk)T

(
CNI

k

)–1
(RB − µk) (S-43)

which can be further simplified as follows

(RA1 − µ1k)2

σ2
1k

+
(RA2 − µ2k)2

σ2
2k

=
(RB1 − µ1k)2

σ2
1k

+
(RB2 − µ2k)2

σ2
2k

. (S-44)

Pairs of responses complying with Eq. S-44 for both k = 1 and k = 2 are merged after the NI

assumption. This transformation, however, is lossless if the responses are non-informative. Pairs of
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responses are non-informative if they comply with Eq. 23 of Eyherabide and Samengo (2013), that is

P(S k|RA) = P(S k|RB) , (S-45)

for both k = 1 and k = 2. Because the posterior probabilities P(S |RA) and P(S |RB) are normalised

to unity, if two responses comply with Eq. S-45 for stimulus S 1, they also comply with Eq. S-45 for

stimulus S 2. Hence, from now on we focus on Eq. S-45 for stimulus S 1. This equation can be written

as

P(RA|S 1) P(S 1)
P(RA|S 1) P(S 1) + P(RA|S 2) P(S 2)

=
P(RB|S 1) P(S 1)

P(RB|S 1) P(S 1) + P(RB|S 2) P(S 2)
, (S-46)

and replacing by Eq. S-38 we obtain the following


1 +

P(S 2)√
det

(
2 πC2

) e
−

1
2

R̃2
A

T
C2

–1
R̃2

A

P(S 1)√
det

(
2 πC1

) e
−

1
2

R̃1
A

T
C1

–1
R̃1

A



−1

=


1 +

P(S 2)√
det

(
2 πC2

) e
−

1
2

R̃2
B

T
C2

–1
R̃2

B

P(S 1)√
det

(
2 πC1

) e
−

1
2

R̃1
B

T
C1

–1
R̃1

B



−1

(S-47)

where R̃k
A = RA − µk and R̃k

B = RB − µk. After simplifications and rearrangements of the terms it

becomes

R̃2
A

T
C2

–1
R̃2

A − R̃2
B

T
C2

–1
R̃2

B = R̃1
A

T
C1

–1
R̃1

A − R̃1
B

T
C1

–1
R̃1

B . (S-48)

Further simplification can be obtained by noticing that

Ck
–1

=
1

det
(
Ck

) [
σ2

2k −ρ̃k

−ρ̃k σ2
1k

]
(S-49a)

=
1

det
(
Ck

) ( [
σ2

2k 0
0 σ2

1k

]
︸      ︷︷      ︸

det
(

CNI
k

) (
CNI

k

)–1

+

[
0 −ρ̃k

−ρ̃k 0

] )
(S-49b)

=
det

(
CNI

k

)
det

(
Ck

) (
CNI

k

)–1
+

1

det
(
Ck

) [
0 −ρ̃k

−ρ̃k 0

]
. (S-49c)
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Replacing into Eq. S-48 we find that the left side becomes

det
(
CNI

2

)
det

(
C2

)
= 0 (Eq. S-43)︷                                   ︸︸                                   ︷(

R̃2
A

T
CNI

2
–1

R̃2
A − R̃2

B
T

CNI
2

–1
R̃2

B

)
+

1

det
(
C2

) (
R̃2

A
T

[
0 −ρ̃2

−ρ̃2 0

]
R̃2

A − R̃2
B

T
[

0 −ρ̃2

−ρ̃2 0

]
R̃2

B

)
︸                                                     ︷︷                                                     ︸

2 ρ̃2

(
R̃2

B1 R̃2
B2 − R̃2

A1 R̃2
A2

)
,

(S-50)

Applying an analogous transformation to the right side of Eq. S-48 we arrive at

ρ̃2 det
(
C1

)
ρ̃1 det

(
C2

) =
(RB1 − µ11) (RB2 − µ21) − (RA1 − µ11) (RA2 − µ21)
(RB1 − µ12) (RB2 − µ22) − (RA1 − µ12) (RA2 − µ22)

. (S-51)

Whenever pairs of responses satisfying simultaneously Eq. S-44 for both stimuli and Eq. S-51, they

are non-informative, and merging them after the NI assumption induces no information loss.

In order to simplify the analysis of the relevance of noise correlations in decoding, we study

separately the following three cases:

Case I: Response distributions with equal mean values, that is µ11 = µ12 and µ21 = µ22.

Case II: Response distributions parallel to one axis, i.e. µ11 = µ12 or µ21 = µ22.

Case III: Response distributions with other mean values, i.e. µ11 , µ12 and µ21 , µ22.

E.1 Case I: µ11 = µ12 and µ21 = µ22

Because the mean values of the response distributions coincide, Eq. S-51 becomes

ρ̃2 det
(
C1

)
ρ̃1 det

(
C2

) = 1 (S-52a)

ρ2 σ11 σ21 (1 − ρ1
2)

ρ1 σ12 σ22 (1 − ρ2
2)

= 1 (S-52b)
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σ12 σ22

σ11 σ21
=
ρ2 (1 − ρ1

2)
ρ1 (1 − ρ2

2)
. (S-52c)

Therefore, noise correlations are almost always crucial for decoding except in those cases where the

variances and the correlation coefficients fulfill Eq. S-52c, which is the same as Eq. 43a in Eyherabide

and Samengo (2013). Since the left side is always positive, this condition is fulfilled only if both

correlation coefficients have the same sign.

An example in which noise correlations are irrelevant for decoding is shown in Figure S-1. In this

example, the parameters of the response distributions comply with Eq. S-52c. Each contour curve (a

curve along which a function remains constant) of the NI likelihood associated with stimulus S 1 (blue

curves) may intersect each contour of the NI likelihood curve associated with stimulus S 2 (orange

curves) in up to four population responses. Responses lying in the intersections of a pair of contour

curves are symmetric with respect to the origin of coordinates (panel A). Because these responses

have the same NI likelihood, they are merged after the NI assumption, and consequently information

may be lost. Such an information loss does not occur, however, because these merged responses are

non-informative. Analogously to the responses merged after the NI assumption, the contour curves of

the posterior probabilities P(S 1|R1,R2) and P(S 2|R1,R2) are also symmetric with respect to the origin

of coordinates (panel B), and therefore, the posterior probabilities of the merged responses comply

with Eq. S-45.

Noise correlations are important for decoding whenever the parameters of the response distri-

butions do not comply with Eq. S-52c. An example is shown in Figure S-2. This example differs

from the one shown in Figure S-1 solely in the value of the correlation coefficient ρ1. NI likelihoods

are therefore the same, and so is the symmetry of responses merged after the NI assumption (panel

A). The contour curves of the posterior probabilities P(S 1|R1,R2) and P(S 2|R1,R2), however, are not

symmetric with respect to the origin of coordinates (panel B). Except for those lying on the axes of

coordinates, all responses merged after the NI assumption do not comply with Eq. S-45 (they have

different posterior probabilities). These responses are informative, and merging them after the NI

assumption induces an information loss.
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Figure S-1. Example in which noise correlations are irrelevant for decoding. A, Contour curves of
noise-independent likelihoods PNI(R1,R2|S 1) and PNI(R1,R2|S 2). B, Contour curves of posterior probabil-
ity P(S 1|R1,R2) (which coincide with the contour curves of P(S 2|R1,R2) defined by P(S 2|R1,R2) = 1 −
P(S 1|R1,R2)). Response parameters are: µ1 = [0, 0], µ2 = [0, 0], σ11 = σ22 = 1, σ21 = 3, σ12 = 2,
ρ1 ≈ 0.41 and ρ2 = 0.3. These response parameters comply with Eq. S-52c.

E.2 Case II: µ11 = µ12 or µ21 = µ22

In this section we study the case in which µ11 = µ12 (that is, the mean values of the responses of R1

elicited by either stimuli are identical). The same results apply to the case µ21 = µ22 after interchang-

ing neurons 1 and 2. The analysis can be simplified by centering and scaling the distributions through

the following change of variables

R̃1 =
R1 − µ11

σ11
and R̃2 =

R2 − (µ21 + µ22)/2
(µ21 − µ22)/2

, (S-53)

In the new variables, the response distributions are located at µ̃1 = [0, 1] and µ̃2 = [0,−1] with

variances σ̃1k = σ1k/σ11 and σ̃2k = 2σ2k/(µ21 − µ22) for each stimulus S k. As a result, Eq. S-44 for

both stimuli becomes

(
R̃A1

)2
+

(
R̃A2 − 1
σ̃21

)2

=
(
R̃B1

)2
+

(
R̃B2 − 1
σ̃21

)2

for S 1 (S-54)
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Figure S-2. Example in which noise correlations are important for decoding. A, Contour curves of
noise-independent likelihoods PNI(R1,R2|S 1) and PNI(R1,R2|S 2). B, Contour curves of posterior probabil-
ity P(S 1|R1,R2) (which coincide with the contour curves of P(S 2|R1,R2) defined by P(S 2|R1,R2) = 1 −
P(S 1|R1,R2)). Response parameters are: µ1 = [0, 0], µ2 = [0, 0], σ11 = 1, σ21 = 3, σ12 = 2, σ22 = 1,
ρ1 = 0 and ρ2 = 0.3. These response parameters do not comply with Eq. S-52c.

(
R̃A1

σ̃12

)2

+

(
R̃A2 + 1
σ̃22

)2

=

(
R̃B1

σ̃12

)2

+

(
R̃B2 + 1
σ̃22

)2

for S 2 . (S-55)

Subtracting Eq. S-54 from Eq. S-55 and solving for R̃A2 result in

R̃A2 = R̃B2 +
R̃A1

2 − R̃B1
2

4

(
σ̃21

2

σ̃11
2 −

σ̃22
2

σ̃12
2

)
. (S-56)

Replacing Eq. S-56 into any of the Eqs. S-54 or S-55 results in a quartic equation in R̃A1, whereas

replacing Eq. S-56 into Eq. S-51 leads to a cubic equation in R̃A1. Therefore, to fulfill Eq. S-51 it

is necessary (though not sufficient) that the quartic equation has less than four real solutions. This

requires that the variances comply with the condition

σ̃21

σ̃11
=
σ̃22

σ̃12
, (S-57)

which means that the response distributions associated with each stimulus have the same aspect ratio.

In this case, the Eqs. S-54 and S-55 have the two following solutions

24



(1) R̃A1 = R̃B1 and R̃A2 = R̃B2

(2) R̃A1 = −R̃B1 and R̃A2 = R̃B2

which are symmetric with respect to the line R1 = 0 . After the change of variables of Eqs. S-53 and

replacing by solution (2), Eq. S-51 becomes

ρ̃2

det
(
C2

) (
R̃A2 + 1

)
=

ρ̃1

det
(
C1

) (
R̃A2 − 1

)
, (S-58)

and solving for R̃A2 we obtain

R̃A2 =
ρ̃1 det

(
C2

)
+ ρ̃2 det

(
C1

)
ρ̃1 det

(
C2

)
− ρ̃2 det

(
C1

) . (S-59)

As a result, Eq. S-51 holds only for one among infinite possible values of R̃A2. Noise correlations are

therefore always crucial for decoding. Notice that this result differs from Eq. 43b in Eyherabide and

Samengo (2013). That result is incorrect, as stated in Section H.3.

E.3 Case III: µ11 , µ12 and µ21 , µ22

The analysis can be simplified by centering and scaling the distributions through the following change

of variables

R̃n =
Rn − (µn1 + µn2)/2

(µn1 − µn2)/2
(S-60)

for each neuron n, so that in the new variables, the response distributions are located at µ̃1 = [1, 1]

and µ̃2 = [−1,−1] with variances σ̃nk = 2σnk/(µn1 − µn2) for each neuron n and stimulus S k. As a

result, Eqs. S-44 for both stimuli becomes

(
R̃A1 − 1
σ̃11

)2

+

(
R̃A2 − 1
σ̃21

)2

=

(
R̃B1 − 1
σ̃11

)2

+

(
R̃B2 − 1
σ̃21

)2

for S 1 (S-61)
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(
R̃A1 + 1
σ̃12

)2

+

(
R̃A2 + 1
σ̃22

)2

=

(
R̃B1 + 1
σ̃12

)2

+

(
R̃B2 + 1
σ̃22

)2

for S 2 . (S-62)

Analogously to the previous case, by subtracting the first equation from the second and solving for

R̃A2 we arrive at

R̃A2 = R̃B2 −
R̃A1 − R̃B1

2

(
σ̃21

2

σ̃11
2 +

σ̃22
2

σ̃12
2

)
+

R̃A1
2
− R̃B1

2

4

(
σ̃21

2

σ̃11
2 −

σ̃22
2

σ̃12
2

)
. (S-63)

Replacing Eq. S-63 into any of the Eqs. S-61 or S-62 results in a quartic equation in R̃A1, whereas

replacing Eq. S-63 into Eq. S-51 leads to a cubic equation in R̃A1. Therefore, to fulfill Eq. S-51 it

is necessary (though not sufficient) that the quartic equation has less than four real solutions. This

requires that the variances comply with the condition

σ̃21

σ̃11
=
σ̃22

σ̃12
, (S-64)

which means that the response distributions associated with each stimulus have the same aspect ratio.

In this case, the Eqs. S-61 and S-62 have the two following solutions

(1) R̃A1 = R̃B1 and R̃A2 = R̃B2

(2) R̃A1 = γ R̃B1 + (1 − γ) R̃B2 and R̃A2 = (1 + γ) R̃B1 − γ R̃B2

where γ =
σ̃22

2 − σ̃12
2

σ̃22
2 + σ̃12

2 .

After the change of variables of Eq. S-60 and the substitution of the solution (2), Eq. S-51 becomes

(σ̃12 − σ̃22) (R̃B1 − R̃B2)
[(

R̃B1

σ̃12
2 +

R̃B2

σ̃22
2

)
(β12 − β21) +

(
1

σ̃12
2 +

1
σ̃22

2

)
(β12 + β21)

]
= 0 , (S-65)

where β jk = ρ j (1 − ρk
2) σ̃1k σ̃2k. This equation holds for all possible values of RB if and only if

σ̃22 = σ̃12. Therefore, in the original variables, noise correlations are almost always crucial for

decoding except when the following condition holds

σ21

σ11
=
σ22

σ12
=
µ11 − µ12

µ21 − µ22
. (S-66)
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An example in which noise correlations are irrelevant for decoding is shown in Figure S-3. In

this example, the parameters of the response distributions comply with Eq. S-66. Each contour curve

of the NI likelihood associated with stimulus S 1 (blue curves) may intersect each contour of the

NI likelihood curve associated with stimulus S 2 (orange curves) in up to two population responses.

Responses lying in the intersections of a pair of contour curves are symmetric with respect to a

diagonal line passing through the origin of coordinates (R2 = R1; panel A). Because these responses

have the same NI likelihood, they are merged after the NI assumption, and consequently information

may be lost. Such an information loss does not occur, however, because these merged responses are

non-informative. Analogously to the responses merged after the NI assumption, the contour curves of

the posterior probabilities P(S 1|R1,R2) and P(S 2|R1,R2) are also symmetric with respect to a diagonal

line passing through the origin of coordinates (panel B), and therefore, the posterior probabilities of

the merged responses comply with Eq. S-45.

Figure S-3. Example in which noise correlations are irrelevant for decoding. A, Contour curves of NI like-
lihoods PNI(R1,R2|S 1) and PNI(R1,R2|S 2). B, Contour curves of posterior probability P(S 1|R1,R2) (which
coincide with the contour curves of P(S 2|R1,R2) defined by P(S 2|R1,R2) = 1 − P(S 1|R1,R2)). Response
parameters are: µ1 = [1, 1], µ2 = [−1,−1], σ11 = σ12 = σ21 = σ22 = 1, ρ1 = −0.1 and ρ2 = 0.1. These
response parameters comply with Eq. S-66.

Noise correlations are important for decoding whenever the parameters of the response distribu-

tions do not comply with Eq. S-66. An example is shown in Figure S-4. This example differs from
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the one shown in Figure S-3 solely in the value of the standard deviation σ11. The NI likelihood

associated with stimulus S 1 is therefore stretched along the horizontal axis, and responses merged

after the NI assumption are not symmetric with respect to any straight line (panel A). To show that

merged responses are informative, consider the pair of responses denoted by black dots in panel A.

These responses have the same NI likelihoods (they lie in the intersections of a pair of contour curves

of NI likelihoods), and are therefore merged after the NI assumption. As shown in panel B, these

responses (black dots) lie near different contour curves of the posterior probabilities. Most of the

responses merged after the NI assumption are informative, and merging them induces an information

loss.

Figure S-4. Example in which noise correlations are irrelevant for decoding. A, Contour curves of NI like-
lihoods PNI(R1,R2|S 1) and PNI(R1,R2|S 2). B, Contour curves of posterior probability P(S 1|R1,R2) (which
coincide with the contour curves of P(S 2|R1,R2) defined by P(S 2|R1,R2) = 1 − P(S 1|R1,R2)). Response
parameters are: µ1 = [1, 1], µ2 = [−1,−1], σ11 = 2, σ21 = σ12 = σ22 = 1, ρ1 = −0.1 and ρ2 = 0.1. These
response parameters do not comply with Eq. S-66.

An additional example in which noise correlations are irrelevant for decoding is shown in Fig-

ure S-5. In this example, the parameters of the response distributions comply with Eq. S-66, but

they differ from the response parameters used in Figure S-3 in the mean values µ1 and µ2, and in the

standard deviations σ11 and σ12. Each contour curve of the NI likelihood associated with stimulus

S 1 (blue curves) may intersect each contour of the NI likelihood curve associated with stimulus S 2
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(orange curves) in up to two population responses. Responses merged after the NI assumption are

not symmetric with respect to any straight line. Merging these responses induces no information loss,

however, because these responses are non-informative. Consider for example the responses denoted

by black dots in panel A. These responses have the same NI likelihoods and are therefore merged after

the NI assumption. Similarly, these responses have the same posterior probabilities (they lie near the

same contour curve of the posterior probabilities; panel B). The posterior probabilities of the merged

responses comply with Eq. S-45 and therefore are non-informative.

Figure S-5. Example in which noise correlations are irrelevant for decoding. A, Contour curves of NI like-
lihoods PNI(R1,R2|S 1) and PNI(R1,R2|S 2). B, Contour curves of posterior probability P(S 1|R1,R2) (which
coincide with the contour curves of P(S 2|R1,R2) defined by P(S 2|R1,R2) = 1 − P(S 1|R1,R2)). Response
parameters are: µ1 = [1, 1], µ2 = [−1,−1], σ11 = σ12 = 2, σ21 = σ22 = 1, ρ1 = −0.1 and ρ2 = 0.1. These
response parameters comply with Eq. S-66.

F Noise correlations are almost always irrelevant when decoding dis-

crete responses

Consider a finite population of N (>1) neurons [R1, . . . ,RN] and a finite set of K (>1) stimuli

{S 1, . . . , S K}. The population response is represented as a vector R = [R1, . . . ,RN]. Each stimulus

S k occurs with probability P(S k) and elicits one population response R among a finite set of Mk
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population responses {Rk
1, . . . ,R

k
Mk
} with probability P(R|S k). We define a case or example of a

stimuli-response mapping with K stimuli and N neurons as a set CNK of probabilities

C =
{
P(S 1), . . . , P(S K), P(R1

1|S 1), . . . , P(R1
M1
|S 1), . . . , . . . , P(RK

1 |S K), . . . , P(RK
MK
|S K)

}
. (S-67)

The set C defines the probabilities with which all stimuli and responses occur in a case or example.

A valid case must comply with the normalization constraints of the probabilities, that is

P(S K) ≥ 0 and
∑
S k

P(S K) = 1 (S-68a)

P(R|S k) ≥ 0 and
∑

R

P(R|S k) = 1 for every k . (S-68b)

For example, the stimulus-response mapping shown in Figure S-6 where stimuli are equally likely

and responses to each stimulus are equally likely constitutes a valid case.

Figure S-6. Example of a population of two neurons R1 and R2 in which responses are elicited by two stimuli
S 1 (panel A) and S 2 (panel B). Symbols inside each square represent the conditional probability P(R1,R2|S k),
k being 1 or 2.

For each stimulus S k, Eq. S-68a defines a simplex CS in RK (the convex flat area which vertexes

have only one non-zero component equal to unity in real space of dimension K). The simplex CS is

of dimension K − 1, and each point of the simplex represents the values the vector of probabilities

[P(S 1, . . . , P(S K)] can take. Analogously, for each stimulus S k Eq. S-68b defines a simplex Ck in

RMk . Each simplex Ck is of dimension Mk − 1, and each point of the simplex represents the values the
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vector of probabilities [P(Rk
1|S k), . . . , P(Rk

Mk
|S k)] can take. The set of all valid cases C is given by

C = CS × C1 × . . . × CK , (S-69)

and it also constitutes a simplex in Rη, where η =
∑
k

Mk. For example, in Figure S-6, CS is a segment

connecting the points [1, 0] and [0, 1] in R2, C1 and C2 are regular tetrahedrons in R4, and C is a

region of dimension 7 in R8.

For noise correlations to be important for decoding, it is necessary (but not sufficient) that at least

one pair of population responses RA and RB, for which P(RA) > 0 and P(RB) > 0, have the same NI

likelihoods (Condition 24a in Eyherabide and Samengo, 2013). This condition implies that

N∏
n=1

P(RAn|S k) −
N∏

n=1

P(RBn|S k) = 0 . (S-70)

Here, P(RAn|S k) is the marginal conditional probability of neuron Rn given stimulus S k evaluated for

the component n of response RA, and is given by

P(RAn|S k) =
∑

R\Rn

P(R1, . . . ,Rn−1,RAn,Rn+1, . . . ,RN |S k) , (S-71)

where the sum extends over all responses of all neurons except neuron Rn. The marginal conditional

probability P(RBn|S k) is defined in analogous manner. By replacing Eq. S-71 into Eq. S-70 we find

that the equality of NI likelihoods can be expressed as a polynomial equation of degree up to N.

The degree of the polynomial depends on the responses RA and RB. For example, in Figure S-6,

when RA = [R1 = 1,R2 = 3] and RB = [2, 3], P(RA2|S 1) = P(RB2|S 1), and therefore Eq. S-70 is a

polynomial of degree 1. The same occurs when RA = [3, 1] and RB = [3, 2]. For any other pair of

response, however, Eq. S-70 is a polynomial of degree 2.

Eq. S-70 defines a surface of dimension Mk−1 in RMk (the same dimensionality as Ck), but not all

the points in this surface correspond to probabilities satisfying Eqs. S-68a and S-68b. For each stim-

ulus S k, Eqs. S-68b and S-70 are fulfilled simultaneously only for a subset of cases Ck
NI of dimension

less than Mk − 1. Otherwise, there would exist a region in which the gradient of the surfaces defined

by both equations coincide. This cannot occur, however, for the gradient of a simplex is constant
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whereas the gradient of the surface defined by of Eq. S-70 is not. When Eq. S-70 is a polynomial of

degree >1, the gradient is not constant but depends on the conditional probabilities of responses given

stimulus S k. When Eq. S-70 is a polynomial of degree equal to unity, the gradient is not constant but

each component varies in sign depending on whether the derivative in each component is taken with

respect to a conditional response probability involving a component of RA or RB, and zero otherwise.

Hence, the dimension of Ck
NI must be Mk−2 or less, whereas the dimension of Ck is Mk−1. This result

occurs for all stimuli S k. Assuming that the system of equations defined by Eq. S-70 for all stimuli

has K̃ independent equations (K ≥ K̃ ≥ 1), the set CNI of all valid cases where noise correlations are

irrelevant is a bounded region in RηNI , where ηNI ≤
∑
k

Mk−K̃. Compared to the set C of all valid cases,

the set CNI is therefore of measure zero (using a counting measure). Intuitively, the ratio between the

number of cases where noise correlations are important and the total number of valid cases is zero.

Though the example shown in Figure S-6 uses a square lattice for quantization of the response, the

demonstration is valid for any type of lattice. The demonstration, however, relies on the assumption

that probabilities P(R|S k) are only constrained by Eq. S-68b. Additional constraints may reduce the

dimensionality of the surface defined by Eq. S-68b and result in a set of cases where noise correlations

are important with the same dimensionality as the set of all valid examples. Consider the example

shown in Figure S-6. The neural population consists of two neurons R1 and R2. Population responses

are elicited by two different stimuli S 1 (panel A) and S 2 (panel B) with specific probabilities (symbol

inside squares). Consider first that probabilities are only constrained by Eq.S-68b. Noise correlations

are important for decoding if responses [R1,R2] = [2, 3] and [3, 2] are merged after the NI assumption,

which occurs whenever Eq. S-70 is fulfilled, that is, when both of the following equations hold

c =
a + b

1 − a − b
b (S-72a)

g =
e + f

1 − e − f
f . (S-72b)

Out of an infinite number of values that c and g can take, only for one are noise correlations important.

The ratio between the number of cases in which noise correlations are important and the total number

of cases is zero. In other words, the set of cases where noise correlations are important is of measure

zero.
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Instead, consider now that probabilities are symmetric with respect to the diagonal line (R2 = R1),

that is, a = d, b = c, e = h, and f = g. Under this constraint, Eq. S-70 holds for any value of the

probabilities, and all possible cases are also cases where noise correlations are important. In other

words, the ratio between the number of cases in which noise correlations are important and the total

number of cases is unity. This indicates that the frequency of occurrence of cases in which noise

correlations are important depends on the type of cases being analysed, where the type is defined by

the additional constraints imposed over the probability distributions of the stimuli and the population

responses.

We have here assumed that noise correlations are irrelevant if and only if the minimum information

loss attainable by NI decoders is strictly zero, and crucial otherwise. In general, noise correlations

have been assumed to play a minor role when the information loss was <10% of the encoded infor-

mation. If reasons exist to set a threshold for the importance of noise correlations higher than the one

we used (like 10% instead of 0%) then the number of cases where noise correlations are important are

even fewer than those here reported (which is already infinitesimally small). The present discussion,

however, does not take into account neither what type of stimuli the information loss represents nor

the consequences of making decoding errors from a biological perspective (or any other perspective

other than communication).

G Codes

The programs provided here are intended to reproduce the results and figure shown in Eyherabide

and Samengo (2013). In order to run the programs, remember to set the current working folder in

Matlab to the folder containing the files. Should you use this code, we kindly request you to cite

the aforementioned publication. Should you find bugs, please contact either Prof. Inés Samengo

(samengo at cab.cnea.gov.ar) or Hugo Gabriel Eyherabide (hugo.eyherabide at helsinki.fi).
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G.1 License and copyright

Copyright 2013 Hugo Gabriel Eyherabide. The programs provided here are free software: you

can redistribute them and/or modify them under the terms of the GNU General Public License as

published by the Free Software Foundation, either version 3 of the License, or (at your option) any

later version. The programs provided here is distributed in the hope that they will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,

see http://www.gnu.org/licenses/.

G.2 Codes for constructing figures

The codes for constructing the figures are the following

1) figure1g.m: Constructs panek G in Figure 1.

2) figure1h.m: Constructs panek H in Figure 1.

3) figure1i.m: Constructs panek I in Figure 1.

4) figure1j.m: Constructs panek J in Figure 1.

5) figure1k.m: Constructs panek K in Figure 1.

6) figure1l.m: Constructs panek L in Figure 1.

7) figure6a.m: Constructs panek A in Figure 6.

8) figure6b.m: Constructs panek B in Figure 6.

The files require no input arguments, and provide as the output the handle of the figure they create.
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G.3 Codes for calculating information losses and decoding errors

The following codes are necessary for constructing the figures and provide additional features for

those interested in experimenting with the results shown in Eyherabide and Samengo (2013)

1) entropy.m: Calculates the entropy of a discrete probability distribution.

2) information.m: Calculates the mutual information I(S ; R) when responses are
discrete.

3) informationgauss.m: Calculates the mutual information I(S ; R) when responses are
Gaussian distributed.

4) infoloss.m: Calculates the information loss induced by NI decoders when
responses are discrete.

5) infolossgauss.m: Calculates the information loss induced by NI decoders when
responses are Gaussian distributed.

6) decerr.m: Calculates the decoding error induced by NI decoders when
responses are discrete.

7) decerrgauss.m: Calculates the decoding error induced by NI decoders when
responses are Gaussian distributed.

8) plotf1p1.m: Estimates the minimum information loss attainable by NI
decoders when responses are discrete as a function of P(S 1) and
creates a figure similar to Figure 1G.

9) plotf1p1g.m: Estimates the minimum information loss attainable by NI
decoders when responses are Gaussian distributed as a function
of P(S 1) and creates a figure similar to Figure 1I.

10) plotf1pllds2.m: Estimates the minimum information loss attainable by NI
decoders when responses are discrete as a function of P(L, L|S 2)
and creates a figure similar to Figure 1J.

11) plotf1prho2g.m: Estimates the minimum information loss attainable by NI
decoders when responses are Gaussian distributed as a function
of ρ2 and creates a figure similar to Figure 1L.

Additional details including input arguments and examples can be found inside each file.
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H CORRIGENDA

H.1 Parameter value in Figure 1L

At the end of the caption of Figure 1 it was stated that, in panel L, the stimulus probability was set to

P(S 1) = 0.2. This is not correct. The actual stimulus probability was set to P(S 1) = 0.1.

H.2 Scales can caption in Figure 6

In Figure 6, the tick labels of the vertical axes are expressed in per-unit, not in percentage as the axes

labels indicate. For example, ∆INIP
NI in per-unit and percentage units is defined as follows

∆INIP
NI [0/1] =

∆INIP
NI

I(R, S )
∆INIP

NI [%] = 100
∆INIP

NI

I(R, S )
In per-unit In percentage

(S-73)

In addition, the caption states between the fifth and the sixth line that

B shows the variation of the increment in the minimum decoding error ∆ξNIP
NI rela-

tive to the minimum decoding error ξMin(R; S ).

This is not correct. Instead, it should say

B shows the variation of the increment in the minimum decoding error ∆ξNIP
NI rela-

tive to the minimum decoding error at chance level.

The minimum decoding error at chance level is here defined as 1 − max
S

{
P(S )

}
, and represents the

minimum decoding error that would be achieved if all population responses were merged before the

estimation stage. In that case, the estimation strategy that minimizes the decoding error consists in

decoding the stimulus that occurs with the maximum probability. This generalization of chance level

reduces to the usual definition of chance level when stimulus categories are balanced, and should also

be taken into account when reading the sentence starting in the seventh line after Eq. 34.
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All in all, Figure 6 should look like this

Figure 6. Difference between assessing the role of noise correlations using mutual information
or decoding error. The population response shown in Figure 5C is decoded using the classical
NI decoder. Response probabilities are set according to P(H, L|S 1) = P(L, L|S 2). For dif-
ferent stimulus probabilities P(S 1), panel A shows the variation of the minimum information
loss ∆INIP

NI (relative to the encoded information I(R; S )), and panel B shows the variation of
the increment in the minimum decoding error ∆ξNIP

NI relative the minimum decoding error at
chance level. The decoding error is here measured as decoding-error probability. The curves
for P(S 1) = p are identical to the curves for P(S 1) = 1 − p (0 ≤ p ≤ 1). A, Unlike the case
shown in Figure 4B, here information is only partially lost, and the loss depends on the stimulus
and response probabilities. The maximum loss, however, only occurs when P(H, L|S 1) reaches
0.5, regardless of the stimulus probability. B, Unlike ∆INIP

NI , ∆ξNIP
NI approaches its maximum

value when P(H, L|S 1) is greater or equal to P(S 1).

H.3 Correction in Eq. 43b and last paragraph of Results

In the last section of Results of Eyherabide and Samengo (2013), we erroneously concluded that,

when the responses of two neurons elicited by two different stimuli have Gaussian distributions, noise

correlations are irrelevant for decoding if the parameters of the response distributions comply with

Eq. 43b. That is, noise correlations are irrelevant if µ11 = µ12 or µ21 = µ22 and

σ12

σ11
=
σ22

σ21
=

√
ρ2 (1 − ρ2

1)

ρ1 (1 − ρ2
2)
. (S-74)

As we showed in Section E.2, this result is not correct, and not even under this conditions noise

correlations become irrelevant. Further corrections in the last paragraph of the Results are necessary

to take into account the elimination of Eq. 43b. This changes are stated later in this section.
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This correction only strengthens our conclusions that noise correlations are almost always

important when decoding the activity of two neurons with Gaussian conditional probability dis-

tributions P(R1,R2|S ) elicited by two different stimuli.

An example in which noise correlations are important for decoding even though response distribu-

tions comply with Eq. S-74 is shown in Figure S-7. Responses lying in the intersections between pairs

of contour curves of NI likelihoods (panel A) are merged after the NI assumption. Such responses are

symmetric with respect to the vertical axis (R1 = 0). This symmetry, however, is not shared by the

contour curves of the posterior probability, indicating that merged responses have different posterior

probabilities. Therefore, most of the merged responses are informative (they do not comply with

Eq. S-45), and noise correlations are important for decoding.

Figure S-7. Example that noise correlations are important for decoding even though response distributions
comply with Eq. S-74. A, Contour curves of NI likelihoods PNI(R1,R2|S 1) and PNI(R1,R2|S 2). B, Contour
curves of posterior probability P(S 1|R1,R2) (which coincide with the contour curves of P(S 2|R1,R2) defined
by P(S 2|R1,R2) = 1 − P(S 1|R1,R2)). Response parameters are: µ1 = [0, 1], µ2 = [0,−1], σ11 = σ21 = 1,
σ12 = σ22 = 2, ρ1 ≈ 0.082 and ρ2 = 0.3.

In addition, the last sentence of the last paragraph of Results states that
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For any departure from conditions 43a-c, noise correlations are important for decod-
ing: Both ∆INIL

NI and ∆ξNIL
NI are greater than zero; their values depend on the specific

case under study, and can range from approximately zero to 100 % (for example,
when condition 43a holds and variances are equal).

As stated at the beginning of the sentence, we are referring to the cases where conditions 43a-c do not

hold, and therefore the text inside the brackets is not correct. Instead, it should say

For any departure from conditions 43a-c, noise correlations are important for decod-
ing: Both ∆INIL

NI and ∆ξNIL
NI are greater than zero; their values depend on the specific

case under study, and can range from approximately zero to 100 % (for example,
when condition 43a does not hold and variances are equal).

In summary, the original version of the manuscript states that

Noise correlations are almost always important for decoding ex-
cept when the following conditions are met

(43a)
σ12 σ22

σ11 σ21
=
ρ2 (1 − ρ2

1)

ρ1 (1 − ρ2
2)

, if µ11 = µ12,
and µ21 = µ22;

(43b)
σ12

σ11
=
σ22

σ21
=

√√
ρ2 (1 − ρ2

1)

ρ1 (1 − ρ2
2)

, if µ11 = µ12,or µ21 = µ22;

(43c)
σ21

σ11
=
σ22

σ12
=
µ11 − µ12

µ21 − µ22
, if µ11 , µ12,

and µ21 , µ22;

Condition 43a, 43b, and 43c establishes relations between the
mean values µnk, correlation coefficients ρk, and standard devi-
ations σnk of the responses of the nth neuron to stimulus S k.
Conditions 43a and 43b hold only when population responses
always exhibit the same type of correlations for all stimuli, i.e.
they are always positively correlated or always negatively cor-
related. Condition 43b also requires that all contour curves of
the NI response distributions are shifted and/or scaled versions of
one another (but not rotated). Finally, condition 43c analogously
constrains the shape of the contour curves, but holds for arbitrary
correlation coefficients. Notice the change in the subindexes from
condition 43b to condition 43c. For any departure from condi-
tions 43a to 43c, noise correlations are important for decoding:
Both ∆INIL

NI and ∆ξNIL
NI are greater than zero; their values depend

on the specific case under study, and can range from ∼ 0 to 100 %
(for example, when condition 43a holds and variances are equal).

This should be replaced by
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Noise correlations are almost always important for decoding ex-
cept when the following conditions are met

(43a)
σ12 σ22

σ11 σ21
=
ρ2 (1 − ρ2

1)

ρ1 (1 − ρ2
2)

, if µ11 = µ12,
and µ21 = µ22;

(43b)
σ21

σ11
=
σ22

σ12
=
µ11 − µ12

µ21 − µ22
, if µ11 , µ12,

and µ21 , µ22;

Condition 43a and 43b establishes relations between the mean
values µnk, correlation coefficients ρk, and standard deviationsσnk

of the responses of the nth neuron to stimulus S k. Condition 43a
holds only when population responses always exhibit the same
type of correlations for all stimuli, i.e. they are always positively
correlated or always negatively correlated. Condition 43b con-
strains the shape of the contour curves, but holds for arbitrary
correlation coefficients. For any departure from conditions 43a
and 43b, noise correlations are important for decoding: Both
∆INIL

NI and ∆ξNIL
NI are greater than zero; their values depend on

the specific case under study, and can range from ∼ 0 to 100 %
(for example, when condition 43a does not hold and variances are
equal).
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