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1 ABSTRACT

Information may be encoded both in the individual activity of neurons and in the correlations between

their activities. Understanding whether knowledge of noise correlations is required to decode all the

encoded information is fundamental for constructing computational models, brain-machine interfaces

and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the read-out

of neural signals is dramatically simplified. To that end, previous studies have constructed decoders

assuming that neurons fire independently, and then derived bounds for the information that is lost.

However, here we show that previous bounds were not tight and overestimated the importance of

noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise

correlations, and show why previous estimations were not tight. Further, by studying the elementary

parts of the decoding process, we determine when and why information is lost on a single-response

basis. We introduce the minimum decoding error to assess the distinctive role of noise correlations

under natural conditions. We conclude that all the encoded information can be decoded without

knowledge of noise correlations in many more situations than previously thought.

2 INTRODUCTION

A fundamental problem in neuroscience is to determine the simplest way to decode all the information

encoded by neural populations. To decode all the information, it suffices to know the probabilistic

mapping between the stimulus and the population activity (Oram et al., 1998; Knill and Pouget, 2004).

When neurons are noise correlated (that is, for each stimulus, their activities are correlated), the

mapping must be built by measuring the joint activity of all neurons in the population; the construc-

tion demands large amounts of data, and becomes experimentally and computationally intractable as

the number of neurons increases (Nirenberg and Latham, 2003; Quian Quiroga and Panzeri, 2009).

However, when neurons are noise-independent, the mapping can be built by measuring the activity of
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each neuron in the population, one at a time, drastically reducing the amount of data required for the

construction. If we assume that neurons are noise-independent even when they are not: Can we still

decode all the encoded information?

To answer this question, previous studies have estimated the inefficiency of decoders that were

constructed assuming that neurons are noise-independent (Nirenberg and Latham, 2003; Latham and

Nirenberg, 2005; Ince et al., 2010; Oizumi et al., 2010). Whenever all of these noise-independent

(NI) decoders are inefficient, noise correlations are considered crucial for decoding. Otherwise, noise

correlations are judged dispensable (Nirenberg et al., 2001; Averbeck et al., 2006). However, the

conclusions drawn from these studies are still controversial. For pairs of neurons, the information lost

by NI decoders was found to be less than 10 % (Nirenberg et al., 2001; Graf et al., 2011; Pita-Almenar

et al., 2011), and noise correlations were considered unimportant. But pairs of neurons do not capture

the complexity of large neural populations. Recent theoretical and experimental studies have shown

cases where the information loss grows with the number of neurons (Averbeck et al., 2006; Klam

et al., 2008; Ince et al., 2010; Oizumi et al., 2010), suggesting that noise correlations can indeed be

important in neural decoding. Unfortunately, as we show here, the estimators used in these studies

miscalculate the inefficiency of NI decoders in a context-dependent manner.

The exact estimation of the inefficiency of NI decoders is fundamental for assessing whether noise

correlations are important in neural decoding, and whether the losses are tolerable in practical appli-

cations. To that end, we here represent all NI decoders as sequences of transformations, separating

the effect of the bare assumption that neurons are noise-independent (the NI assumption) from the

specific criteria used to select the decoded stimulus. We then quantify the information loss and the

increment in the decoding error induced solely by the NI assumption, and prove that the best NI

decoder can achieve these bounds.

Equally important is to determine how the neural code is transformed as a consequence of the NI

assumption. We identify which response features are informative and which ones constitute noise, and

whether they are preserved by the NI assumption and the subsequent transformations in the decoding
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process. Altogether, we provide a complete framework for assessing when and why information is

lost by NI decoders.

3 MATERIALS AND METHODS

3.1 Encoding, decoding and neural information

The encoding process is the transduction of sensory stimuli S into responses R = [R1, . . . ,RN] of a

population of N neurons (Rn is the response of the nth neuron). A priori, different stimuli S occur with

probabilities P(S ). Responses R are elicited with probabilities P(R|S ). Posterior to the observation

of R, the stimulus probability becomes P(S |R). When the probability distributions P(S ) and P(S |R)

are different, the population response R contains information about S , i.e. R may be used to infer S

with higher precision than chance level. In units of bits, the mutual information I(S ; R) is quantified

as

I(S ; R) = E
P(S )

[
log2 P(S )

]
︸            ︷︷            ︸

H(S )

− E
P(S ,R)

[
log2 P(S |R)

]
︸                  ︷︷                  ︸

H(S |R)

. (1)

Here, E
Y

[
X
]

represents the weighted mean of X with weights Y . The total entropy H(S ) and the noise

entropy H(S |R) quantify the average uncertainty of S prior and posterior to the observation of R,

respectively. The mutual information I(S ; R) represents the average reduction in the uncertainty of S

due to the observation of R.

The decoding process is the transformation of the population response R into an estimation S Dec of

the stimulus S . For all decoders, the decoded information I(S ; S Dec) is upper bounded by the encoded

information I(S ; R). This bound is a consequence of the Data Processing Inequality, which states

that no transformation of the population response R can increase the amount of information about
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the stimulus S (Cover and Thomas, 1991; Quian Quiroga and Panzeri, 2009). The Coding Theorem

(Shannon, 1948; Cover and Thomas, 1991) ensures that this bound is tight, and can be achieved by

decoding extended sequences of stimuli and responses. However, biological constraints (for example,

fast behavioral responses) may severely restrict the length of the sequences, thus reducing the decoded

information below the bound. The information lost by a given decoding algorithm is defined as

∆IDec = I(S ; R) − I(S ; S Dec) ≥ 0 . (2)

When ∆IDec is greater than zero, some information (∆IDec) about the stimulus S , encoded in the pop-

ulation response R, is lost during the decoding process. In other words, the decoder has ignored some

information (∆IDec) that may have improved the stimulus estimation. If ∆IDec is zero, the decoding

process is optimal, i.e. it decodes all the encoded information. Further discussion on the meaning of

∆IDec can be found in Eyherabide and Samengo (2010) and references therein.

3.2 The family of noise-independent decoders

Noise-independent (NI) decoders are here defined as probabilistic decoders (that is, decoders that infer

the stimulus from the conditional probability distribution of the response) constructed under the noise-

independence (NI) assumption (the assumption that neurons are noise-independent). Mathematically,

the NI assumption states that the probability P(R|S k) of the population response R = [R1, . . . ,RN]

(N is the number of neurons in the population) elicited by the stimulus S k can be inferred from the

probability P(Rn|S k) of each neuron in the population as

P(R|S k) = PNI(R|S k) =

N∏
n=1

P(Rn|S k) . (3)

Here, PNI(R|S k) is called noise-independent (NI) likelihood. By multiplying the probabilities of

individual neurons P(Rn|S k), NI decoders neglect all noise correlations among neurons. Once the
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NI assumption is made, several NI decoders can be constructed as

S NI(R) = f NIL
(

PNI(R|S 1), . . . , PNI(R|S K)
)
, (4)

employing different algorithms f NIL for extracting the decoded stimulus S NI from the NI likelihoods

(K is the number of stimuli). This construction is here called canonical NI decoder.

The best-known construction of NI decoders is here called classical NI decoder, which is based

on the NI posterior probabilities

PNI(S k|R) =
PNI(R|S k) P(S k)∑

k̂

PNI(R|S k̂) P(S k̂)
(5)

obtained from Eq. 3 by applying Bayes’ rule. Different classical NI decoders can be constructed by

using different algorithms f NIP for inferring the decoded stimulus S NI from the NI posteriors

S NI(R) = f NIP
(
PNI(S 1|R), . . . , PNI(S K |R)

)
, (6)

the most common choice being the maximum-posterior criterion (Nirenberg and Latham, 2003;

Latham and Nirenberg, 2005; Oizumi et al., 2010)

S NI(R) = arg max
S k

(
PNI(S 1|R), . . . , PNI(S K |R)

)
. (7)

Although classical NI decoders are by far the most popular, they are just a subset of all canonical

NI decoders, i.e. they are a restricted choice of all possible probabilistic decoders based on the

NI assumption. Classical NI decoders based on the maximum-posterior criterion have often been

claimed to be optimal within the family of NI decoders. This is indeed true if neurons are truly

noise-independent. Otherwise, optimality is not guaranteed, as we show in this study.
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3.3 Estimators of the minimum information loss induced by NI decoders

Previous studies have proposed to estimate the minimum information loss ∆IMin
NI induced by NI de-

coders using different criteria, namely

(8a) ∆IMin
NI = ∆INI = I(S ; R) − I(S ; S NI)

(8b) ∆IMin
NI = ∆ILS

NI = I(S ; R) − I
(
S ; S NI

1 , . . . , S NI
K

)
(8c) ∆IMin

NI = ∆ID
NI = D

(
P(S |R)||PNI(S |R)

)
(8d) ∆IMin

NI = ∆IDL
NI = min

θ
∆ĨDL

NI (θ) .

In criterion 8a (Quian Quiroga and Panzeri, 2009; Ince et al., 2010), the information loss ∆INI

measures the difference between the encoded information and the information decoded by a specific

implementation of the NI decoder, chosen by the researcher. In criterion 8b (Ince et al., 2010), S NI
k

(1 ≤ k ≤ K) depends on the population response R and represents the kth most likely stimulus if

neurons were noise-independent. Thus, ∆ILS
NI measures the difference between the encoded informa-

tion and the information extracted by a decoder that ranks the set of stimuli with respect to their NI

posterior probability. In criterion 8c (Nirenberg and Latham, 2003; Latham and Nirenberg, 2005),D

represents the conditional Kullback-Leibler divergence, and therefore, ∆ID
NI measures the departure

of PNI(S |R) from P(S |R). In criterion 8d (Latham and Nirenberg, 2005; Oizumi et al., 2010),

∆ĨDL
NI (θ) = D

(
P(S |R)||P̃NI(S |R, θ)

)
(9a)

P̃NI(S |R, θ) ∝ P(S )
N∏

n=1

(
P(Rn|S )

)θ
, (9b)

where θ is a real number, whose value is chosen to minimize ∆ĨDL
NI (θ). The quantity ∆IDL

NI measures the

information loss induced by a classical NI decoder when operating on long sequences of responses.

Both ∆ID
NI (criterion 8c) and ∆IDL

NI (criterion 8d) are intended to provide information-theoretical esti-

mators that do not require to build specific NI decoders.
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3.4 Decoding error

The decoding error is here defined as the average cost of mistakenly estimating the stimulus S that

elicited a population response R, namely

ξDec = E
P(S ,S Dec)

[
L(S , S Dec)

]
, (10)

where L(S , S Dec) is the non-negative cost of inferring S Dec when the encoded stimulus was S (Duda

et al., 2000; Bishop, 2006).

The minimum decoding error for all possible decoders based on a specific representation R of the

population response is given by

ξMin(R, S ) = E
P(R)

min
S Dec

 E
P(S |R)

[
L(S , S Dec)

]
 , (11)

where the minimization runs over all decoded stimuli (Bishop, 2006; Hastie et al., 2009). This

minimum is achievable by a decoder defined as

S Dec = arg min
S̃

 E
P(S |R)

[
L(S , S̃ )

] . (12)

The specific decoders that achieve the minimum decoding error depend on the shape ofL (Simoncelli,

2009). For example, the decoding-error probability (also known as fraction incorrect or error rate),

can be obtained by setting L(S , S Dec) equal to zero if S and S Dec coincide, or to unity otherwise. The

decoder that achieves the minimum decoding-error probability is given by

S Dec = arg max
S

P(S |R) . (13)
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3.5 Decoders based on surrogate responses

Previous studies have also proposed to study the importance of noise correlations using decoders that

were optimized for decoding the surrogate population activity that would be elicited if neurons were

truly noise-independent (Nirenberg et al., 2001; Berens et al., 2012). For each stimulus, this set of

surrogate NI population responses {RNI} is computed as the Cartesian product of the sets {Rn} whose

elements are the individual responses of the nth neuron

{RNI} = {R1} × . . . × {RN} . (14)

To train the decoder, surrogate NI population responses RNI are drawn from the set {RNI} with proba-

bilities given by Eq. 3.

4 RESULTS

4.1 Shortcomings of previous measures of information loss

The importance of noise correlations in neural decoding has been assessed by comparing the encoded

information with the information extracted by NI decoders, which can be constructed in many dif-

ferent ways. The minimum difference between these two quantities is the minimum information loss

∆IMin
NI induced by NI decoders. If ∆IMin

NI is greater than zero, then noise correlations are important:

By neglecting them, information is lost. The minimum information loss ∆IMin
NI has been estimated in

several ways. In this section, we compare the four most widely-used estimators and show that they all

tend to overestimate the importance of noise correlations in neural decoding. The results are illustrated

with three examples in Figure 1. Previous studies have concluded that, in these examples, noise cor-

relations are important for decoding. Below we demonstrate, however, that these conclusions are not
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valid in general: They may or may not hold, depending on the stimulus and response probabilities, and

also on the amount of correlation in the responses. In the first two examples (Figure 1A,B), responses

to stimulus S 1 are negatively correlated and responses to stimulus S 2 are positively correlated. In

the third example (Figure 1C), continuous responses are analyzed, and the amount of correlation or

anticorrelation of responses to stimulus S 2 is not fixed, but rather, depends on the value of a given

parameter.

Previous studies have estimated ∆IMin
NI as the actual information loss ∆INI (criterion 8a; see

blue line in Figure 1G-L) induced by a specific implementation of the NI decoder, chosen by the

researcher. The most common choice is here called classical NI decoder (Eq. 7), which, for each

population response, decodes the stimulus with the highest NI posterior probability PNI(S |R) (Wu

et al., 2001; Nirenberg and Latham, 2003; Latham and Nirenberg, 2005; Ince et al., 2010). For

example, in Figure 1A, the classical NI decoder always estimates the correct stimulus except for

response [R1,R2] = [M,M]. Whenever

PNI(S 2|M,M) < PNI(S 1|M,M) , (15)

the classical NI decoder infers that the response [M,M] was elicited by stimulus S 1, whereas an

optimal decoder constructed with knowledge of noise correlations always decodes the stimulus S 2,

and hence ∆INI is greater than zero. However, if Eq. 15 does not hold, the stimuli decoded by these two

decoders always coincide, and thus ∆INI is zero. When varying the stimulus and response probabilities

in a continuous manner, as in Figure 1G,J, the transition between these two different situations is

reflected as a discontinuity in the representation of ∆INI , resulting in a broken line. Whenever the

classical NI decoder is optimal (∆INI is zero), noise correlations are irrelevant for decoding. The

converse, however, is not necessarily true. The classical NI decoder is only one among many ways

of constructing a NI decoder. Other NI decoders may be more efficient or even optimal. In the latter

case, noise correlations are irrelevant, regardless of the value of ∆INI .

For example, a NI decoder can be constructed just like the classical NI decoder, but with the
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stimulus prior probabilities (P̂(S )) differing from those (P(S )) set in the experiment (Oram et al.,

1998). It may be puzzling to see that such NI decoder constructed with unrealistic prior probabilities

may operate more efficiently than the classical NI decoder constructed with the real priors. Indeed,

altering an optimal decoder constructed with the real probabilities P(R|S ) cannot increase the infor-

mation, and might actually reduce it. But there is no reason to believe that, when altering a suboptimal

decoder constructed with unrealistic (NI) probabilities, the information may not increase. Of course,

only carefully chosen alterations can do the job. In Figure 1G, a classical NI decoder with P̂(S 1)

fixed at a value between 0 and 0.5 is capable of decoding the stimulus without error (Eq. 15 is never

fulfilled), regardless of the true stimulus probabilities.

In an attempt to avoid the arbitrariness of the choice of a NI decoder (Averbeck et al., 2006; Quian

Quiroga and Panzeri, 2009), Nirenberg et al. (2001) proposed to measure ∆IMin
NI as the divergence ∆ID

NI

between the probability distributions of the stimulus given the response computed with and without

the noise-independence (NI) assumption (criterion 8c; see red line in Figure 1G-L). This method aims

at estimating the information loss without decoding explicitly the population response. However, it

may severely overestimate ∆IMin
NI . For the example shown in Figure 1A, ∆ID

NI becomes

∆ID
NI = −P(M,M; S 2) log2 PNI(S 2|M,M) , (16)

and thus ∆ID
NI is always greater than zero, even though we showed that the classical NI decoder is

optimal for a wide range of stimulus and response probabilities. The overestimation problem was

first shown by Schneidman et al. (2003), who also showed that, strangely, ∆ID
NI can even exceed the

encoded information (see upper-right corner of Figure 1H). Indeed, if ∆ID
NI is zero, then ∆INI is zero

and noise correlations are unimportant, but the converse is not necessarily true. Lately, Ince et al.

(2010) showed that, in rat somatosensory cortex, the size of the overestimation increases with the

number of neurons in the population.

Oizumi et al. (2010) proposed to solve the overestimation problem by computing another quantity,

here called ∆IDL
NI (criterion 8d; see black line in Figure 1G-L), which measures the performance of a
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classical NI decoder when decoding long sequences of responses (Latham and Nirenberg, 2005).

Unfortunately, ∆IDL
NI also overestimates ∆IMin

NI in a context-dependent manner. Consider the example

shown in Figure 1A. The estimation of ∆IDL
NI involves a minimization problem (Eq. 8d), leading to

∆IDL
NI =


0 if PNI(M,M|S 1) , PNI(M,M|S 2)

∆ID
NI if PNI(M,M|S 1) = PNI(M,M|S 2)

. (17)

By comparing Eqs. 17 and 15, we find that whenever PNI(M,M|S 1) = PNI(M,M|S 2) and P(S 2) >

P(S 1), the classical NI decoder is optimal, despite ∆IDL
NI > 0. The same occurs for the other examples

shown in Figure 1, where ∆IDL
NI may be larger or smaller than ∆INI depending on the stimulus and

response probabilities. Thus, ∆IDL
NI does not constitute a limit to the inefficiency of NI decoders.

Recently, Ince et al. (2010) proposed another alternative, by estimating ∆IMin
NI as the information

loss ∆ILS
NI induced by a NI decoder that associates each response with a list of stimuli ordered accord-

ing to how likely they would be if neurons were noise-independent (see criterion 8b; see blue line in

Figure 1G-L). In Figure 1, ∆ILS
NI coincides with ∆INI (the same occurs in any experiment involving

two stimuli), and thus, it exhibits the same drawbacks. In general, ∆ILS
NI represents a tighter bound

than ∆INI (Ince et al., 2010). But, as discussed in the next sections, it still overestimates ∆IMin
NI , for

analogous reasons to those of ∆INI .

The estimators mentioned above are based on probabilistic NI decoders, i.e. decoders that infer

the stimulus from the probability of the population responses computed with the NI assumption

(Eq. 3). Previous studies have also proposed another alternative: to base the estimation of ∆IMin
NI

on decoders (generally linear) whose parameters are optimized for decoding surrogate NI population

responses, that is, artificial responses that are generated under the NI assumption (see Methods and

Figure 1D-F; Nirenberg et al., 2001; Averbeck and Lee, 2006; Quian Quiroga and Panzeri, 2009;

Berens et al., 2012). By comparing these two alternatives, however, we find that they may lead to

opposite conclusions: Noise correlations may turn out to be irrelevant in one of them, and essential

in the other (Figure 2). Most importantly, using the second approach, one may conclude that noise
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correlations are essential even though neurons are actually noise-independent (see Figure 2B). At

first glance, one might think of this issue as an overestimation problem that, as in the case of ∆INI ,

could be avoided if one considered all possible decoding algorithms, not only linear. Unfortunately,

without constraining the type of decoding algorithms and optimization criteria, this estimator trivially

underestimates ∆IMin
NI , and yields the conclusion that noise correlations are always irrelevant for neural

decoding.

Figure 2. Comparison of different strategies to construct decoders that ignore noise correlations. Each panel
shows the simultaneous responses of two neurons R1 and R2 elicited by two stimuli S 1 and S 2. In both
examples, stimuli and responses are equally likely. A, A linear decoder trained with surrogate NI population
responses (dashed line) extracts all the encoded information, whereas no probabilistic NI decoder can do so.
Specifically, a probabilistic NI decoder is inefficient for a range of probabilities P(R1,R2|S k) complying with
both P(2, 2|S 1)2 = P(1, 3|S 1) P(3, 1|S 1) and P(3, 3|S 2)2 = P(2, 4|S 2) P(4, 2|S 2). B, Although neurons are
noise-independent, a linear decoder trained as mentioned before is incapable of extracting all the encoded
information.

To prove this, notice first that the set of surrogate NI population responses {RNI} can be constructed

by adding to the set of population responses {R} all those responses that would occur only if neurons

were noise-independent. Hence, any decoding algorithm that maps {RNI} into the set of stimuli {S }

can be written as

S Dec =


f Dec
1 (RNI) if RNI ∈ {R}

f Dec
2 (RNI) otherwise

. (18)

Among all possible mappings from {RNI} to {S }, there always exists at least one for which f Dec
1

coincides with an optimal criterion to decode the population responses R.

Previous studies have hypothesized that the NI assumption increases the number of real responses
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lying in the overlap between the surrogate NI responses associated with different stimuli (compare

panels A-C with panels D-F in Figure 1), thereby introducing ambiguity in the NI decoding process

and losing information. This conclusion, however, is not always true. The decoding rule may well

evaluate the magnitude of each NI posterior probability (Eq. 6), and with this information always

decode the same stimulus as a decoder constructed with knowledge of noise correlations (Bishop,

2006). For example, in Figure 1A, the population response [R1,R2] = [M,M] is only elicited by

stimulus S 2. However, if neurons were noise-independent, [M,M] would be elicited by both S 1 and

S 2 (Figure 1D). Notwithstanding, the classical NI decoder operates optimally for a wide range of

stimulus and response probabilities (Figures 1G,J). The presence of real responses in the overlap

between the surrogate NI responses associated with each stimulus constitutes a necessary but not a

sufficient condition for a NI decoder to be lossy.

In summary, we have shown that, without appropriate constraints, previous approaches using

surrogate NI population responses may not be suitable for the analysis of the importance of noise

correlations in neural decoding. Other approaches based on probabilistic NI decoders do not exhibit

this problem, because the construction of the NI decoder is purely based on the NI assumption.

However, the estimators used in these approaches tend to overestimate the minimum inefficiency

of probabilistic NI decoders in a context-dependent manner, and none of them constitutes a universal

bound. Unfortunately, the overestimation problem cannot be solved by simply taking the minimum

estimation, though this strategy is better than relying on one estimator alone. In the next section, we

show how to evaluate the exact value of the minimum information loss.

4.2 The exact measure of the minimum information loss

Previous estimators fail to tightly bound the minimum information loss of NI decoders. The reasons

for the failure depend on the estimator, as shown in the previous section. In the case of ∆INI , the

failure is due to the fact that the optimal decoder is not searched among all possible NI decoders, but
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at best, among subsets of limited size. However, the failure can be avoided by extending the search

to all possible NI decoders. To that end, in this section we first introduce the notion of canonical

NI decoders, that is, the set of all decoders that comply with the NI assumption (Eq. 3). Using a

fundamental theorem in Information Theory, namely the Coding Theorem, we then determine exactly

the amount of information lost by the best canonical NI decoder. This information loss is smaller than

the bounds analyzed in the previous section (see Figure 1).

All probabilistic NI decoders, here called canonical NI decoders (Eq. 4), can be described as

a two-stage process (Figure 3). Without loss of generality, consider the population response R =

[ R1, . . . ,RN ] (N is the number of neurons) elicited by a stimulus S k (1 ≤ k ≤ K, being K the number

of stimuli). In the first stage, the population response R is internally represented as a vector RNIL of

noise-independent (NI) likelihoods (defined in Eq. 3), given by

RNIL =
[

PNI(R|S 1), . . . , PNI(R|S K)
]
. (19)

This step, and only this step, embodies the NI assumption. The second stage represents the transfor-

mation of RNIL into the decoded stimulus S NI , and embodies the estimation criterion used to decode

the stimulus.

As stated by the Data Processing Inequality (see Methods), each transformation in the sequence

cannot increase the information about the stimulus, and may potentially induce an information loss.

The information lost in each stage of the decoding process can be determined using standard methods

previously developed for the analysis of neural codes (Borst and Theunissen, 1999; Panzeri et al.,

2007; Eyherabide and Samengo, 2010). In particular, the actual information loss ∆INI induced by

canonical NI decoders can be separated as

∆INI = I(S ; R) − I(S ; RNIL)︸                    ︷︷                    ︸
∆INIL

NI

+

∆IEst
NI︷                      ︸︸                      ︷

I(S ; RNIL) − I(S ; S NI) . (20)
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Figure 3. The canonical NI decoder is modeled as a sequence of transformations of the population response.
The first stage involves the NI assumption, transforming the population response R into a vector RNIL of noise-
independent (NI) likelihoods. The second stage involves the stimulus estimation, transforming RNIL into the
decoded stimulus S NI . At each stage, information may be lost.

Here, ∆INIL
NI is the information loss induced by the NI assumption (first stage) and ∆IEst

NI is the infor-

mation loss induced by the estimation process (second stage).

The NI assumption (first stage) is common to all NI decoders, and therefore ∆INIL
NI constitutes a

lower bound to the information loss induced by all NI decoders. Mathematically, Eq. 20 decomposes

the actual information loss ∆INI into two non-negative terms, thereby proving that ∆INIL
NI is a lower

bound of ∆INI . Nevertheless, ∆INIL
NI could still underestimate the minimum information loss induced

by all NI decoders. To prove that ∆INIL
NI is tight, we need to prove that a NI decoder exists, for which

∆INI coincides with ∆INIL
NI , as we do next.

Different estimation criteria induce different information losses ∆IEst
NI . However, the Coding The-

orem (Shannon, 1948; Cover and Thomas, 1991) demonstrates the existence of decoding procedure

that, operating on long sequences of responses, can make ∆IEst
NI negligible, thus extracting all the

information I(S ; RNIL) that is preserved after the NI assumption. Because the NI assumption is
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common to all NI decoders, I(S ; RNIL) constitutes the maximum amount of information that can

be extracted by any canonical NI decoder, and the difference

∆IMin
NI = ∆INIL

NI = I(S ; R) − I(S ; RNIL) ≥ 0 , (21)

constitutes the minimum information loss induced by any decoder embodying the NI assumption, that

is, the single fundamental property needed to evaluate the relevance of correlations (Nirenberg and

Latham, 2003).

We have invoked the Coding Theorem to demonstrate Eq. 21. This theorem was demonstrated

by Shannon (1948), and promoted the development of information theory as a full discipline. In the

context of our work, the theorem applies to the mapping S → R → RNIL, which can be abbreviated

as S → RNIL. This mapping, in the notation of Shannon, constitutes a channel that transforms each S

into RNIL. Repeated uses of the channel transform sequences of Q stimuli [S 1, . . . , S Q] into sequences

[RNIL
1 , . . . ,RNIL

Q ]. Shannon’s proof involved actual decoders that mapped sequences of Q responses

RNIL into sequences of Q decoded stimuli S NI . By making Q sufficiently large, he showed that there

is at least one decoder for whom the information transmission rate I(S , S NI) can be made as close

as desired to I(S ,RNIL) with negligible decoding error, thus yielding Eq. 21. Two things, however,

should be noticed. First, Shannon did not display his decoder explicitly – and neither do we. He

simply demonstrated its existence. Second, in order for the theorem to hold, long sequences of stimuli

and responses may be required. This requirement may be undesirable when studying the neural code

under behavioral contexts, so later on we introduce the minimum decoding error, to circumvent this

inconvenience.

To illustrate how Eqs. 20 and 21 improve the analysis of the role of noise correlations in neural

decoding, consider the examples shown in Figure 4. Each panel shows how the population response

is transformed throughout the decoding process by the canonical NI decoder. These examples were

analyzed in Figure 1, where we showed that, for a wide range of stimulus and response probabilities,

all previous estimators indicated that noise correlations are important. However, as we show next,
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these estimators include not only the information loss induced by the NI assumption, but also the

information loss induced by underlying assumptions constraining the estimation criteria, thus overes-

timating the importance of noise correlations.

In the example shown in Figure 4A (previously analyzed in Figure 1A), ∆INIL
NI is zero, irrespective

of the values of the stimulus and response probabilities. Indeed, after the first stage (where the NI as-

sumption takes place) population responses elicited by different stimuli remain different (i.e. they are

associated with different RNIL; middle panel), as we formally show after the next section. Therefore,

the losses reported by previous estimators necessarily occur during the estimation stage. However,

among all mappings between the representation RNIL and the stimulus, there is at least one capable

of correctly estimating the stimulus. Thus, all the encoded information can be extracted without any

loss, and noise correlations are irrelevant for decoding. Notice, nevertheless, that finding an optimal

estimation criterion explicitly is unnecessary. As we showed above, the minimum inefficiency of NI

decoders, and the importance of noise correlations in neural decoding, can both be assessed by using

∆INIL
NI even before considering any estimation criterion.

Of course, information may be lost before the stimulus estimation takes place, due to the NI

assumption. Consider the examples shown in Figures 4B,C (previously analyzed in Figure 1B).

When both P(H, L|S 1) and P(H,H|S 2) are set to 0.5 (Figure 4B), ∆INIL
NI is equal to the encoded

information. Noise correlations are thus crucial for decoding. Indeed, after the NI assumption, all

population responses become indistinguishable (middle panel) and no estimation criterion is capable

of extracting any information about the stimulus (Gawne and Richmond, 1993). These carefully

chosen response probabilities, however, constitute an isolated case. For other values of the response

probabilities (Figure 4C), all population responses are represented differently after the NI assumption

(as we formally show after the next section), and therefore ∆INIL
NI is zero. In consequence, except for

the isolated case of Figure 4B, noise correlations are irrelevant for decoding.
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Figure 4. Examples of population activities decoded using the canonical NI decoder. The arrows show the
transformation of population responses into vectors of NI likelihoods (RNIL) induced by the NI assumption
(left to middle panels), and optimal estimation algorithms (middle to right panels). In A P(S 1) is set to 0.75,
and P(M, L|S 1) and P(H,H|S 2) are both set to 0.5. In B and C, stimuli are equally likely, and P(H, L|S 1)
and P(H,H|S 2) are both set to 0.5 in B, and 0.66 in C. A, After the NI assumption, the distinction between
responses elicited by different stimuli is preserved (middle panel). Hence, ∆INIL

NI is zero, and noise correlations
are unimportant for decoding. B, After the NI assumption, all responses are identical. No information about the
stimulus remains, and noise correlations are crucial for decoding. C, However, whenever population responses
are not equally likely given each stimulus, the NI assumption preserves all the encoded information, and noise
correlations are unimportant for decoding. The case shown in B, where noise correlations are important,
constitutes therefore an isolated example.
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4.3 When and why information is lost throughout the decoding process

In the previous section, we first modeled the noise-independent (NI) decoder as a sequence of

transformations of the population response (Figure 3), and then quantified the average information

loss induced by each stage of the NI decoding process (Eq. 20) over all population responses (see

Methods). But information losses need not be evenly distributed among responses. In this section, we

determine which are the specific responses that induce losses, and the amount and type of information

that is lost. We demonstrate that losses may only appear in those responses where the decoding

mapping is not injective. To localize the loss, we analyze how each successive transformation in the

decoding process merges distinct representations of two or more responses into a single one, so that

their distinction is lost. The approach is similar to previous studies of the neural code (see Eyherabide

and Samengo, 2010, and references therein), revealing what sort of information about the stimulus is

preserved or lost, and which response features encode such information.

After each transformation in the decoding process, two or more population responses whose

distinction is informative may be represented in identical manner, and thus their distinction is no

longer available for subsequent transformations. Whenever that happens, information is lost. To

assess whether the distinction between two (or more) population responses RA and RB is informative

or constitutes noise, we first construct a representation R̃ that treats those responses as if they were

the same, but keeps the distinction between all other responses. Then, we compare the encoded

information with and without the distinction (Eyherabide and Samengo, 2010)

∆IR→R̃ = I(R; S ) − I(R̃; S ) ≥ 0 . (22)

Whenever ∆IR→R̃ is zero, the distinction between RA and RB provides no additional information and

only constitutes noise. For example, in Figure 4B, this is the case of population responses [R1,R2] =

[L,H] and [H, L], or responses [L, L] and [H,H]. Notice that, when responses vary in a continuum,

single responses are typically associated with a probability density. In that case, a representation

R̃ that treats two single responses RA and RB as equivalent induces no information loss. In the
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continuous case, an information loss occurs only when R̃ treats a set of population responses as

equivalent, and in addition, the probability of the set is nonzero.

The condition for the distinction between responses to be informative (Eq. 22) can also be written

as a direct comparison between the real posterior probabilities P(S |R). The distinction between two

(or more) population responses RA and RB constitutes noise if and only if

P(S k|RA) = P(S k|RB) , (23)

for all stimuli S k (this comes directly from Eq. 22). Otherwise, their distinction is informative, and

ignoring it induces an information loss ∆IR→R̃. Examples of informative variations and noise when

population responses are represented as continuous variables are given in the last section of Results.

We can now formally state when and why noise correlations are important in neural decoding.

During the decoding process, the population response R is first transformed into RNIL, immediately

after the NI assumption takes place (Figure 3). This transformation induces an information loss when

(and only when) the three following conditions are fulfilled:

(24a) The mapping R→ RNIL is not injective, and, as a consequence, there are two or more responses

{R1, . . .RQ} mapped onto the same RNIL,

(24b) Eq. 23 is not fulfilled for at least two responses complying with condition 24a and one stimulus

S k, and

(24c) the probability of the set of population responses fulfilling both conditions 24a and 24b is

nonzero.

Noise correlations are important for decoding specifically those responses satisfying these three con-

ditions. The cause of the loss (the why) relies on the fact that the NI assumption no longer allows

the decoder to take into account the differences in their information content. The losses can be linked
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to specific stimulus and response features by interpreting RNIL as a reduced representation of the

population response (Eyherabide and Samengo, 2010). In such paradigm, population responses are

represented as a vector of response features, each one conveying information about specific stimulus

features. Only some of those response features (and their information content) are preserved after the

NI assumption (first stage). The analysis of the preserved and lost features allows one to determine

the effect of the NI assumption on the neural code.

With conditions 24a-c in mind, we can provide an approximate estimation of the likelihood that

correlations be relevant. For discrete responses, noise correlations are often irrelevant, because con-

dition 24a is often violated. This condition requires that at least two different responses RA and RB

be mapped onto the same vector RNIL. This is unlikely, though, because the mapping from R to

RNIL goes from a discrete set to a continuous space (Eq. 19). For continuous responses, the mapping

from R to RNIL goes from a continuous space of dimension N (N is the number of neurons) to a

continuous space of dimension K (K is the number of stimuli). Intuitively, one would therefore

expect that correlations would be relevant more often in the case of continuous responses than in the

case of discrete responses, and that the importance of correlations should tend to increase with N and

decrease with K.

This approximate estimation, however, should not be taken as a hard rule. One can construct

an infinite number of counter-examples where noise correlations are crucial for discrete responses

(see Figures 2 and 4), or where the importance of noise correlations, for discrete and continuous

responses, decreases with N and increases with K, exactly opposite to the approximate estimation

mentioned above. Nevertheless, one can prove that, for examples with a finite number of discrete

responses, these counter-examples, though infinite in number, constitute a set of measure zero in the

space of all possible examples, at least when using a counting measure (i.e. a measure that simply

counts the number of cases irrespective of how likely they occur in nature; Tao, 2011). Unfortunately,

for examples with continuous responses or with an infinite number of discrete responses, such proof

remains elusive.
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Furthermore, one should observe that, in experimental conditions, neither responses nor response

probabilities can be measured with infinite precision. Experimental errors and limited sampling may

both produce broad distributions of responses, each response associated with distributions of response

probabilities. Mathematically, each population response R is associated not with a probability P(R|S )

(as would occur if probabilities could be estimated with infinite precision), but with a distribution of

probabilities Q(P(R|S )) for each stimulus S . The distribution Q(P(R|S )) can be estimated either

using Bayesian approaches or resampling methods (Bishop, 2006; Hastie et al., 2009). In other

words, due to experimental errors and limited sampling, P(R|S ) becomes a random variable with

probability Q(P(R|S )). Furthermore, the mapping from R to RNIL (Eq. 19) becomes a probabilistic

one-to-many mapping, as opposed to the deterministic one-to-one mapping that would be obtained

if response probabilities were measured with infinite precision. The change in the nature of the

mapping R→ RNIL should be taken into account when evaluating ∆INIL
NI , resulting in a distribution of

information losses rather than in a unique deterministic value. Moreover, the equalities in conditions

24a and 24b should be interpreted in statistical terms (that is, equalities should be assessed through

hypothesis testing). In these circumstances, NI decoders become lossy more frequently than predicted

by the approximate prediction above. The relevance of correlations, and the certainty with which such

relevance is assessed, therefore, depend on the quality of the measured data.

Finally, notice that, in many applications, discrete responses arise as quantizations of continuous

responses. It would be desirable to recover, for increasingly small bins, the results obtained with the

original continuous responses. The typical procedure is to assign a single probability to each bin, as

for example, the mean value of the original continuous probability distribution inside the bin. This

approach leads to a purely discrete model that represents poorly the importance of noise correlations in

the underlying continuous responses. To solve this problem, a different quantization procedure should

be employed. One possibility consists in associating each bin RBin with a probability distribution

P(RNIL|RBin), representing the spread of the conditional response probabilities of the continuous case,

and thereby, including some uncertainty in the value of RNIL. The probabilistic mapping between RBin

and RNIL connects two continuous spaces, and the results obtained with such quantization procedure

becomes consistent with those obtained with the original continuous responses.
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4.4 The impact of the choice of a NI decoder

Within the family of canonical NI decoders (Figure 3), specific NI decoders differ in the estimation

criteria used to decode the stimulus. For example, in classical NI decoders, the estimation process

involves the calculation of the probability of each stimulus given the population response (using

Bayes’ rule) as if neurons were noise-independent, and then the selection of the most likely stimulus.

In this section, we show in detail why this estimation strategy need not be optimal when applied after

the NI assumption.

Classical NI decoders can be modeled as a three-stage process (Figure 5A). In the first stage the

population response R is transformed into a vector of NI likelihoods RNIL (Eq. 19). In the second

stage, RNIL is further transformed into a vector of noise-independent (NI) posterior probabilities

RNIP =
[

PNI(S 1|R), . . . , PNI(S K |R)
]
, (25)

through Bayes’ rule (Eq. 5). The final stage is the estimation of the stimulus from RNIP through

the maximum-posterior criterion (Eq. 7; Wu et al., 2001; Nirenberg and Latham, 2003; Latham and

Nirenberg, 2005; Ince et al., 2010).

In this model, Bayes’ rule acts as a deterministic mapping that transforms the vector of NI like-

lihoods RNIL into another vector of NI posteriors RNIP. This mapping can be injective or not. If

it is injective, then Bayes’ rule is obviously lossless. Otherwise, it may cause an information loss,

as we show below when discussing the example of Figure 5C. Notice however that, when using the

real stimulus-response probabilities describing the data, Bayes’ rule is always lossless, because the

responses that are confounded constitute noise, as shown in the previous section.
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Figure 5. The impact of the choice of a NI decoder. A, The classical NI decoder is modeled as a three-stage
process involving: the NI assumption (first stage), where the population response is transformed into a vector
of NI likelihoods (RNIL); Bayes’ rule (second stage), where RNIL is transformed into a vector of NI posteriors
(RNIP); and the estimation criterion (third stage), where the decoded stimulus is inferred from RNIP. Each
stage may induce an information loss. B, C, Population responses of Figure 4A,C, decoded with the classical
NI decoder. B, Both RNIL and RNIP keep responses elicited by different stimuli segregated, and hence, all
information is preserved. However, the stimulus cannot always be correctly inferred by simply choosing the one
corresponding to the maximum noise-independent posterior (argmax criterion, dotted line and arrows in right
panel). Nevertheless, there is an estimation criterion capable of correctly estimating the stimulus (continuous
lines and arrows in right panel). C, Although the NI assumption preserves all the encoded information, after
Bayes’ rule, responses associated with different stimuli are merged, and thus some (but not all) information
is lost (∆INIB

NI is greater than zero). As a result, no estimation criterion is capable of perfectly decoding the
stimulus. However, other NI decoders may still be optimal for decoding (see Figure 4C).
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The actual information loss ∆INI induced by the classical NI decoder can be separated as

∆INI = ∆INIL
NI +

I(S ;RNIL)−I(S ;RNIP)︷︸︸︷
∆INIB

NI︸                        ︷︷                        ︸
∆INIP

NI

+

I(S ;RNIP)−I(S ;S NI )︷︸︸︷
∆IEst

NI . (26)

This equation shows that the actual information loss induced by the classical NI decoder contains

three different contributions:

1) the information loss ∆INIL
NI , induced by the NI assumption (Eq. 21);

2) the information loss ∆INIB
NI , induced by Bayes’ rule;

3) the information loss ∆IEst
NI , induced by the chosen stimulus-estimation criterion (in this case, the

maximum posterior).

To understand how choosing the NI decoder affects the decoded information, consider the example

shown in Figure 5B (previously analyzed in Figure 4A). P(S 1) is set to 0.75, and both P(M, L|S 1) and

P(H,H|S 2) are set to 0.5. Throughout the NI decoding process, the population responses R = [R1,R2]

are first transformed through Eq. 19 into the representations RNIL =
[
PNI(R|S 1), PNI(R|S 2)

]
, and then

through Eq. 25 into RNIP =
[
PNI(S 1|R), PNI(S 2|R)

]
, resulting in

R −→ RNIL −→ RNIP

[ L ,M] −→ [ 0.25 , 0 ] −→ [ 1 , 0 ]

[M , L ] −→ [ 0.25 , 0 ] −→ [ 1 , 0 ]

[M ,M] −→ [ 0.25 ,0.25 ] −→ [ 0.75 , 0.25 ]

[ H , H ] −→ [ 0 , 0.25 ] −→ [ 0 , 1 ]

These transformations are also shown in the figure. The first stage only merges the population re-
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sponses [L,M] and [M, L], but their distinction only constitutes noise (∆IR→RNIL is zero; Eq. 22), and

thus no information is lost (∆INIL
NI is zero). The second stage is an injective mapping, and thus it does

not affect the decoded information either (∆INIB
NI is zero).

Using Eqs. 19 and 25 in an analogous manner, we can generalize the previous results to arbitrary

values of the stimulus and response probabilities: Responses associated with different stimuli are

always represented in a different manner, both after the first stage and after the second stage. As a

result, any information loss (shown in Figure 1G,J) is due to the estimation criterion. Nevertheless,

among all possible estimation criteria, there is at least one capable of extracting all the information

remaining in RNIP, which is equal to the encoded information. This optimal estimation criterion,

however, differs from the maximum-posterior criterion (see right panel in Figure 5B).

Another example is analyzed in Figure 5C (previously analyzed in Figure 4C), where losses

are distributed differently throughout the decoding process. Stimuli are equally likely, and both

P(H, L|S 1) and P(H,H|S 2) are set to 0.66. Throughout the NI decoding process, the population

responses R = [R1,R2] are first transformed (recall Eqs. 19 and 25) as follows

R −→ RNIL −→ RNIP

[ L , L ] −→ [ 0.22 ,0.11 ] −→ [ 0.66 ,0.33 ]

[ L , H ] −→ [ 0.11 ,0.22 ] −→ [ 0.33 ,0.66 ]

[ H , L ] −→ [ 0.44 ,0.22 ] −→ [ 0.66 ,0.33 ]

[ H , H ] −→ [ 0.22 ,0.44 ] −→ [ 0.33 ,0.66 ]

These transformations are also shown in the figure. The first transformation merges no population re-

sponses. Thus, the distinction between population responses is preserved after the NI assumption, and

∆INIL
NI is zero. The second transformation, however, merges response [L,H] with [H,H], and [H, L]

with [L, L]. Unlike RNIL, the representation RNIP carries less information about the stimulus than the
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encoded information, and ∆INIB
NI is greater than zero (see Figure 6A). In consequence, although there

exists a canonical NI decoder capable of decoding without error (Figure 4C), classical NI decoders

are unable to extract all the information preserved after the NI assumption.

Figure 6. Difference between assessing the role of noise correlations using mutual information or decoding
error. The population response shown in Figure 5C is decoded using the classical NI decoder. Response
probabilities are set according to P(H, L|S 1) = P(L, L|S 2). For different stimulus probabilities P(S 1), panel
A shows the variation of the minimum information loss ∆INIP

NI (relative to the encoded information I(R; S )),
and panel B shows the variation of the increment in the minimum decoding error ∆ξNIP

NI relative the minimum
decoding error at chance level. The decoding error is here measured as decoding-error probability. The curves
for P(S 1) = p are identical to the curves for P(S 1) = 1− p (0 ≤ p ≤ 1). A, Unlike the case shown in Figure 4B,
here information is only partially lost, and the loss depends on the stimulus and response probabilities. The
maximum loss, however, only occurs when P(H, L|S 1) reaches 0.5, regardless of the stimulus probability. B,
Unlike ∆INIP

NI , ∆ξNIP
NI approaches its maximum value when P(H, L|S 1) is greater or equal to P(S 1).

For other values of stimulus and response probabilities, almost always exists a canonical NI de-

coder capable of decoding without error (Figure 4C), except in the isolated case shown in Figure 4B.

Yet, classical NI decoders may still be incapable of extracting all the information preserved after the

NI assumption. Unlike RNIL, population responses associated with different stimuli are not always

mapped after Bayes’ rule onto different RNIP. There are two cases where responses are merged:

(a) when P(L,H|S 1) = P(H,H|S 2), in which case, response [L,H] is merged with [L, L], and [H, L]

with [H,H]; and (b) when P(L,H|S 1) = P(L, L|S 2), in which case, response [L,H] is merged with

[H,H], and [H, L] with [L, L] (this case is shown in Figure 5C). In consequence, the representation

RNIP carries less information about the stimulus than the encoded information, and ∆INIB
NI is greater

than zero (see refsfigf6A). These cases constitute examples where NI decoders can be optimal, but

for achieving optimality, the estimation must be based purely on the NI assumption, i.e. on RNIL.

Using Eqs. 21, 23, and 26 we can now prove why estimators based on ∆INI (criterion 8a) and ∆ILS
NI
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(criterion 8b) overestimate the minimum information loss ∆IMin
NI . Both methods have two occasions

to include unnecessary losses. The first occasion appears when transforming RNIL into RNIP (Bayes’

rule). When neurons are truly noise-independent, ∆INIL
NI and ∆INIP

NI coincide; otherwise, as a result of

Bayes’ rule, some responses whose distinction is informative may be merged (as shown in Figure 5C),

and hence ∆INIP
NI > ∆INIL

NI . The second occasion appears when passing from RNIP to the decoded

stimulus S NI . In the case of ∆INI , the estimation criterion usually coincides with the maximum

posterior which, as shown above, may be suboptimal when employed under the NI assumption. In the

case of ∆ILS
NI , RNIP is transformed into a ranking of stimuli. This stage, although more finely-grained

than the purely maximum-posterior criterion, may still lump distinct representations RNIP into one

single ranking, and thereby, perhaps lose information.

4.5 The minimum decoding error

The analysis of the effects of ignoring noise correlations in neural decoding was here performed

using mutual information (Cover and Thomas, 1991; Borst and Theunissen, 1999). This quantity

sets a limit to the decoding performance (for example, in the number of stimulus categories that

can be distinguished with negligible error probability), but this limit may only be achievable when

decoding long sequences of population responses (i.e. comprising several consecutive population

responses, also known as block coding; Cover and Thomas, 1991). Long sequences of responses

inevitably have a long duration. In order to produce timely behavioral reactions, however, neural

systems must process information in short-time windows (tens or hundreds of milliseconds) (Panzeri

et al., 2010; Hari and Kujala, 2009). Long sequences of responses may therefore be inconsistent with

the fast behavioral responses observed in nature. In addition, mutual information may not adequately

represent the cost of wrongly estimating the stimulus (Nirenberg and Latham, 2003). To overcome

these issues, in this section we additionally bound the inefficiency of NI decoders using the minimum

decoding error.
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The minimum decoding error ξMin(S ; R) (Eq. 11) can be defined using different cost functions

(Simoncelli, 2009), and allows one to assess the importance of noise correlations when decoding is

performed on a single-response basis. Like mutual information, it is non-negative and depends on the

representation R of the population response. Furthermore, ξMin(S ; R) also follows the data processing

inequality (Cover and Thomas, 1991; Quian Quiroga and Panzeri, 2009), but it actually increases with

transformations of R. Let R̃ = g(R) be one of such transformations (deterministic or stochastic). Then

ξMin(R; S ) ≤ ξMin(R̃; S ) . (27)

To prove this, recall that E
Y

[
X
]

represents the weighted mean of X with weights Y . We derive Eq. 27

by writing

ξMin(R, S ) = E
P(R)

min
S Dec

 E
P(S |R)

[
L(S , S Dec)

]
 (28a)

= E
P(R̃)

 E
P(R|R̃)

min
S Dec

 E
P(S |R)

[
L(S , S Dec)

]

 (28b)

≤ E
P(R̃)

min
S Dec

 E
P(R|R̃)

 E
P(S |R)

[
L(S , S Dec)

]

 (28c)

= ξMin(R̃; S ) . (28d)

Because of these similarities, the mathematical framework and the interpretations obtained from

the minimum decoding error are almost identical to those of mutual information, taking care of the

change in the sign of the data processing inequality (as shown below). However, when applied to

experimental data, the results obtained using mutual information or minimum decoding error may

differ, both quantitatively and qualitatively, depending on the case under study (as shown in the next

section).

The increment in the decoding error ∆ξNI induced by a canonical NI decoder (Figure 3) with

respect to the minimum decoding error ξMin(R; S ) (that would be achievable if noise correlations
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were taken into account) is given by

∆ξNI = ξNI − ξ
Min(R; S ) , (29)

where ξNI is the actual decoding error induced by the specific implementation of the canonical NI

decoder. Analogously to Eq. 20, ∆ξNI can be separated as

∆ξNI = ∆ξNIL
NI︸︷︷︸

ξMin(S ; RNIL) − ξMin(S ; R)

+

ξNI − ξ
Min(S ; RNIL)︷︸︸︷
∆ξEst

NI . (30)

∆ξNIL
NI and ∆ξEst

NI represent the increment in the minimum decoding error induced by the NI assump-

tion and the estimation criterion, respectively. Among all mappings between RNIL and the decoded

stimulus S NI , there is one for which

S NI = arg min
S̃

 E
P(S |RNIL)

[
L(S , S̃ )

] . (31)

Such decoder induces no additional increment in the minimum decoding error (see Eq. 12). Therefore,

∆ξNIL
NI constitutes the minimum increment in the minimum decoding error attainable by at least one

canonical NI decoder, i.e. those purely based on the NI assumption. Whenever ∆ξNIL
NI is zero, the

NI assumption does not increase the minimum decoding error, and noise correlations can be safely

ignored.

Similarly to Eq. 26, the increment in the decoding error induced by classical NI decoders (Fig-

ure 5A) can be written as

∆ξNI = ∆ξNIL
NI +

ξMin(S ;RNIP)−ξMin(S ;RNIL)︷︸︸︷
∆ξNIB

NI︸                              ︷︷                              ︸
∆ξNIP

NI

+

ξNI−ξ
Min(S ;RNIP)︷︸︸︷
∆ξEst

NI , (32)

where ∆ξNIL
NI was defined in Eq. 30. Here, ∆ξNIB

NI represents the increment in the minimum decoding

error due to Bayes’ rule. ∆ξNIP
NI is the minimum increment in the minimum decoding error attainable
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by all classical NI decoders, and may be greater or equal to ∆ξNIL
NI (Eq. 27).

Any increment in the minimum decoding error occurs because, during the decoding process, some

population responses are treated as identical. The importance of the distinction between two (or more)

population responses RA and RB can be tested by first constructing a representation R̃ that treats them

as identical (but keeps the distinction between all other responses), and then computing

∆ξR→R̃ = ξMin(R̃; S ) − ξMin(R; S ) ≥ 0 . (33)

Whenever ∆ξR→R̃ is zero, the distinction between RA and RB does not increment the minimum decod-

ing error and can be safely ignored. Otherwise, ∆ξR→R̃ shows the increment in the minimum decoding

error due to ignoring their distinction.

As an example, consider the population response shown in Figure 4B and C. When responses are

equally likely (Figure 4B), ∆ξNIL
NI reaches its maximum value

∆ξNIL
NI = min

S Dec
E

P(S )

[
L(S , S Dec)

]
. (34)

Indeed, after the NI assumption, all population responses are represented in the same way, and the

NI decoder performs at chance level. However, in all cases where responses are not equally likely

(Figure 4C), ∆ξNIL
NI is zero. In other words, if responses are not equally likely, a canonical NI decoder

exists, capable of decoding the stimulus with the same accuracy as if noise correlations were taken

into account (such decoder is shown in Figure 4C). Classical NI decoders operate substantially worse

(Figure 5C), because population responses become indistinguishable before the estimation process,

and thus perform at chance level, for a wide range of response probabilities (Figure 6B). Even though

some information still remains in RNIP (Figure 6A), it cannot be extracted using single responses.

Although in general ∆INIL
NI and ∆ξNIL

NI are not deterministically related (Thomson and Kristan,

2005), here we show some useful relations between these two quantities in specific cases:
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(35a) If ∆INIL
NI is zero, then ∆ξNIL

NI is zero.

If ∆INIL
NI = 0, then I(S ; R|RNIL) = 0, and hence R can be written as a transformation (determin-

istic or stochastic) of RNIL. Following the data processing inequality (Eq. 27), ∆ξNIL
NI = 0.

(35b) Corollary: If ∆ξNIL
NI > 0, then ∆INIL

NI > 0.

(35c) If ξMin(RNIL, S ) is zero, then ∆INIL
NI and ∆ξNIL

NI are zero.

If ξMin(RNIL, S ) = 0, the data processing inequality ensures that ∆ξNIL
NI = 0. In the absence of

errors, such NI decoder extracts all the encoded information, and thus ∆INIL
NI = 0.

(35d) If ∆INIL
NI is equal to the encoded information (I(S ; R)), then ξMin(RNIL, S ) is given by Eq. 34.

In this case, S and RNIL are independent. The result follows from introducing independence

into Eq. 11.

The analysis can also be generalized to other measures of transmitted information, like those

defined by Victor and Nirenberg (2008), with the condition that they comply with the data processing

inequality (Cover and Thomas, 1991). Moreover, it can be extended to other probabilistic mismatched

decoders, that is, to decoders constructed using stimulus-response probability distributions that differ

from the real ones (Quian Quiroga and Panzeri, 2009; Oizumi et al., 2010). One simply replaces

the NI likelihoods by those corresponding to the probabilistic model under consideration. Decod-

ing in the real brain may be subjected to additional constraints imposed by biophysics, connection

length, metabolic cost or robustness, that cannot be simply represented by a generalized measure of

information. Our approach can be extended to these cases by computing the difference between the

information transmitted by the optimal NI decoder that additionally satisfy these constraints with that

of optimal decoders constructed with knowledge of noise correlations that operate under the same

constraints.
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4.6 The role of noise correlations in biologically plausible models

So far, we have discussed the role of noise correlations in examples where the response space is

discrete. In those examples, the minimum information loss and the minimum decoding error lead to

the same conclusions about the role of noise correlations. However, more interesting models from the

biological point of view generally involve responses varying in a continuum. In this section, we apply

our theoretical framework to continuum extensions of the discrete examples mentioned above and, on

the way, compare what can be learned about the role of noise correlations when using the minimum

information loss (∆INIL
NI ) and the minimum increment in the minimum decoding error (∆ξNIL

NI ).

Consider the two examples shown in Figure 7, where responses to each stimulus are drawn from

Gaussian distributions. Similar examples have been previously studied assuming equal variance and

correlations among neurons (Sompolinsky et al., 2001; Wu et al., 2001; Averbeck et al., 2006; Aver-

beck and Lee, 2006). These studies, however, have also pointed out that those highly homogeneous

examples are rather unlikely in nature. More biologically-driven examples should include differences

in variances, in correlations and in the symmetry of the distribution of responses among neurons, as

observed, for example, in the monkey MT area (Huang and Lisberger, 2009) and V1 area (Kohn and

Smith, 2005). These differences, even if small, may change dramatically the role of noise correlations

in neural decoding (as shown in Figure 1). With these ideas in mind, we have here chosen two

examples where responses elicited by stimulus S 1 are negatively correlated whereas responses elicited

by S 2 are positively correlated.

The example of Figure 7A-C is an extension to the continuum of the case studied in Figures 1A,

4A and 5B. In what follows, we first show that, for the particular values of the parameters used in

Figure 7A-C, noise correlations are irrelevant in neural decoding, a conclusion that previous estima-

tors failed to reveal. Later we show, however, that the irrelevance of noise correlations is a direct

consequence of the specific values of the parameters used in this example, and that, contrary to the

discrete case, noise correlations are almost always important for arbitrary values of the parameters.
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For the example shown in Figure 7A-C, the estimations of the minimum information loss ∆IMin
NI

are

∆INI = 15.53 % ∆ID
NI = 6.43 %

∆ILS
NI = 15.53 % ∆IDL

NI = 6.32 %
(36)

all showing that noise correlations are not dispensable. However,

∆INIL
NI = 0 , (37)

indicating that the NI assumption preserves all the encoded information, and that all previous estima-

tions overestimated both ∆IMin
NI and the importance of noise correlations.

To understand the discrepancy between our approach and previous estimators, see the left panel in

Figure 7C. Responses that are symmetric with respect to the diagonal R1 = R2 have the same NI like-

lihoods (Eq. 19). Therefore, after the NI assumption (Figure 3 and middle panel in Figure 7B), those

responses are merged. Luckily, the distinction between these responses is not informative. Indeed, in

the right panel of Figure 7C we show that these responses have the same posterior probabilities, and

thus comply with Eq. 23. Thus, no information is lost after the NI assumption. In other words, noise

correlations can be safely ignored.

Analogously, ∆ξNIL
NI is zero, and thus the NI assumption does not increment the minimum decoding

error. To see this, compare Figure 7A and B, where we show the performance of optimal decoders with

and without knowledge of correlations, respectively. Population responses associated with different

decoded stimuli in Figure 7A are never merged after the NI assumption (middle panel in Figure 7B).

In consequence, the same mapping from population responses to decoded stimuli can be constructed

even after the NI assumption takes place. Notice, nevertheless, that the optimal decision boundary

based on the NI likelihoods is curved, and differs from the maximum-likelihood criterion (dashed

diagonal) or maximum-posterior criterion, which coincides with the maximum-likelihood criterion

when stimuli are equally likely.
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The situation is different in the example shown in Figure 7D-F. Here, the estimations of ∆IMin
NI are

∆INI = 19.16 % ∆ID
NI = 3.22 %

∆ILS
NI = 19.16 % ∆IDL

NI = 3.22 %
(38)

whereas

∆INIL
NI = 1.32 % , (39)

indicating that previous estimations overestimated the importance of noise correlations, although

noise correlations are not completely irrelevant. Notice that, as in the previous example, ∆INI (or

∆ILS
NI ) is far greater than ∆INIL

NI (and also greater than ∆IDL
NI and ∆ID

NI). These results indicate that

the maximum rate of stimuli that can be processed without decoding errors decreases in more than

1% after ignoring noise correlations. One may wonder how the performance of the NI decoder is

affected when decoding single population responses, a situation where response sequences are short,

and decoding errors are allowed.

To answer this question, we determine the minimum decoding error (measured as the error prob-

ability; see Eq. 10 in Methods) with and without the NI assumption

ξMin(RNIL, S ) = 7.847 %

ξMin(R, S ) = 7.834 % .

(40)

Their difference (which equals ∆ξNIL
NI ; see Eq. 30) represents only 0.166 % of ξMin(R, S ), indicating

that noise correlations are almost irrelevant when decoding single responses.

To understand why this increment in the minimum decoding error occurs, compare Figure 7D and

E. Unlike the previous example, here some population responses associated with different decoded

stimuli in Figure 7D are merged after the NI assumption (middle panel in Figure 7E). In consequence,

the mapping from population responses onto decoded stimuli under the NI assumption is inevitably
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different from the mapping of an optimal decoder that takes correlations into account. The arrows

from middle to right panels in Figure 7E indicate the optimal decoding strategy (achieving ∆ξNIL
NI ) once

the NI assumption is made. The optimal mapping is constructed by first transforming the population

response R into RNIL (Eq. 19). Then, we decode for each RNIL the stimulus that most likely elicited

all responses mapped into RNIL, i.e.

S NI =


S 1 if P(S 1|RNIL) > P(S 2|RNIL)

S 2 otherwise
(41)

where P(S i|RNIL) is proportional to the sum of all joint probabilities P(R, S ) whose response R is

mapped onto RNIL. Although in general, population responses mapped onto regions above and below

the dashed diagonal are decoded as S 2 and S 1, respectively, for some regions near the origin of

coordinates, the situation is reversed.

We can now generalize the results to arbitrary Gaussian distributions and stimulus probabilities,

following the same reasoning as in Figure 7C,F. Consider that the responses of two neurons R1 and

R2 elicited by two stimuli S 1 and S 2 have a Gaussian distribution N (Bishop, 2006) given by

P(R|S k) = N



R1

R2

 ,

µ1k

µ2k

 ,

σ1k

2 ρ̃k

ρ̃k σ2k
2


 , (42)

where µnk, ρk, and σnk represent the mean values, correlation coefficients, and standard deviations of

the responses of the nth neuron to stimulus S k, and ρ̃k = ρk σ1k σ2k. Noise correlations are almost

always important for decoding except when the following conditions are met

(43a)
σ12 σ22

σ11 σ21
=
ρ2 (1 − ρ1

2)
ρ1 (1 − ρ2

2)
,

if µ11 = µ12,

and µ21 = µ22;

(43b)
σ21

σ11
=
σ22

σ12
=
µ11 − µ12

µ21 − µ22
,

if µ11 , µ12,

and µ21 , µ22;
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Condition 43a and 43b establishes relations between the mean values µnk, correlation coefficients

ρk, and standard deviations σnk of the responses of the nth neuron to stimulus S k. Condition 43a

holds only when population responses always exhibit the same type of correlations for all stimuli,

i.e. they are always positively correlated or always negatively correlated. Condition 43b constrains

the shape of the contour curves, but holds for arbitrary correlation coefficients. For any departure

from conditions 43a and 43b, noise correlations are important for decoding: Both ∆INIL
NI and ∆ξNIL

NI

are greater than zero; their values depend on the specific case under study, and can range from ∼ 0 to

100 % (for example, when condition 43a does not hold and variances are equal).

5 DISCUSSION

In neural decoding, the importance of noise correlations has been linked to the minimum inefficiency

of noise-independent (NI) decoders. These decoders have been constructed using two different meth-

ods. The first one involves training specific types of decoders (generally linear) using surrogate NI

responses (Nirenberg et al., 2001; Latham and Nirenberg, 2005; Quian Quiroga and Panzeri, 2009;

Berens et al., 2012). Here we showed that the inefficiency of these decoders may, depending on the

decoding models and optimization functions, overestimate or underestimate the importance of noise

correlations, and may not even be related to the noise-independence (NI) assumption (Figure 2).

Consequently, the results obtained with this method ought to be observed with caution. The second

method involves probabilistic decoders that explicitly take the NI assumption as part of the decoding

algorithm (Nirenberg et al., 2001; Wu et al., 2001; Nirenberg and Latham, 2003; Latham and Niren-

berg, 2005; Ince et al., 2010; Oizumi et al., 2010); the consistency with the NI assumption is therefore

guaranteed (Nirenberg and Latham, 2003).

The inefficiency of probabilistic NI decoders (hereafter called NI decoders) has been previously

assessed either by measuring the information preserved in their output (∆INI and ∆ILS
NI ) (Nirenberg et

al., 2001; Ince et al., 2010), or by using information theoretical quantities (∆ID
NI and ∆IDL

NI ) (Nirenberg
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et al., 2001; Nirenberg and Latham, 2003; Latham and Nirenberg, 2005; Oizumi et al., 2010). Here,

we compared these estimators for a wide range of population responses and probability distributions.

We found that none of them bounds the inefficiency of all NI decoders tightly (Figures 1 and 7),

and all of them overestimate the importance of noise correlations. In consequence, previous studies

concluding that noise correlations are important based on these estimators may require a second

evaluation with the methods presented here.

Previous studies have claimed that NI decoders inferring the stimulus from a maximum-posterior

criterion (Eq. 7) are optimal. When operating with the true response probabilities, this criterion

minimizes the decoding-error probability (Eq. 13). However, neither other definitions of decoding

error (Eq. 10) nor the information loss (Eq. 2) are guaranteed to be minimized. When operating

with NI response probabilities, not even the minimization of the decoding-error probability is guar-

anteed (unless ∆ID
NI is zero; Nirenberg and Latham, 2003). As shown in Figures 5 and 7, using a

maximum-posterior criterion may result in overestimating the minimum inefficiency of NI decoders,

and consequently the importance of noise correlations.

To solve this problem, we first modeled NI decoders as series of transformations of the population

response, only the first one embodying the NI assumption, and the following ones representing the

estimation criterion (Figures 3 and 5A). We then noticed that the information loss ∆INIL
NI induced

by the first transformation is common to all NI decoders, and, with no restrictions on the stimulus

estimation algorithms, constitutes an attainable lower bound to the lost information (Coding Theorem;

Cover and Thomas, 1991). The computation of ∆INIL
NI (and also its variance and bias) can be done

using standard tools for the analysis of neural codes (Montemurro et al., 2007; Panzeri et al., 2007;

Eyherabide and Samengo, 2010).

The interpretation of NI decoders as sequences of processes is fundamental to understand the

role of noise correlations in neural decoding. Using this paradigm, we studied the effect of the NI

assumption on later stages of the NI decoder. After the NI assumption, the application of Bayes’ rule

may give rise to additional information losses (Figure 5C). Interestingly, information losses may be
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reduced by using different stimulus prior probabilities than those set in the experiment (Figure 1G).

However, when applied to the true conditional response probabilities (as opposed to the NI response

probabilities), Bayes’ rule induces no information loss. These results stress the remarkable differ-

ences (often overlooked) between decoding algorithms constructed with the real population-response

probabilities and mismatched decoders (Oizumi et al., 2010).

Most importantly, we determined when and why information is lost by NI decoders in a single-

response basis: Information losses occur because some population responses that are informative are

transformed in such a way that their distinction is unavailable for subsequent stages. To identify which

distinctions are informative and which ones constitute noise, we do not rely on previous definitions

of noise as mere variations around a mean (Oram et al., 1998; Sompolinsky et al., 2001; Averbeck

et al., 2006). Instead, our definition of noise explicitly evaluates the role of response variations in

information transmission. Certainly, some variations around the mean are essential to information

transmission even in the absence of noise correlations (Figure 2B).

By analyzing the importance of noise correlations on a single-response bases, we found that,

in broad terms, their importance depends on the relation between the number of stimuli (K) and the

number of neurons (N), and, in general, noise correlations are likely to be irrelevant. This approximate

picture may explain why previous studies, using different values of N and K, often differed in the

relevance ascribed to noise correlations. Moreover, it may aid the design of future experiments whose

outcomes depend on the importance of noise correlations. In order to get an accurate assessment of

the importance of noise correlations in each individual case, however, one should rely on ∆INIL
NI , and

not on the approximate argument mentioned above.

The role of noise correlations in neural decoding, however, cannot be completely characterized

with quantities solely based on mutual information, because mutual information takes into account

neither temporal constraints of real neural systems nor behavioral meaning of stimuli (Nirenberg and

Latham, 2003). When operating on single responses, higher or lower decoded information may not

be directly reflected in the efficiency of a decoder (Thomson and Kristan, 2005). Here, we proposed
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to additionally assess the role of noise correlations using quantities based on the minimum decoding

error. This quantity exhibits many similarities with mutual information, and, in addition, it can handle

short-time windows and reflect the biological cost of making specific decoding errors.

Our results contrast with previous studies in three major points. First, we assess the role of cor-

relations using ∆INIL
NI and ∆ξNIL

NI without explicitly displaying the best NI decoders (i.e. NI decoders

that minimize ∆INIL
NI or ∆ξNIL

NI ). Our formulation has both benefits and limitations. The benefits

are that we can draw conclusions about the importance of correlations with minimal computational

cost. The limitation is that, if we do actually need to use a decoder, we have no explicit formula

describing the best ones. To our knowledge, an explicit formula only exists for the NI decoder that

minimizes the decoding error (Eq. 31), providing that correlations are known. Nevertheless, one

should remember that minimizing the decoding error does not translate into maximizing the decoded

information (Treves, 1997; Thomson and Kristan, 2005). In general, the best NI decoders must be

found by searching among all possible NI decoders. To aid the search, our analysis provides insight

into which distinctions between population responses must be preserved throughout the decoding

process to achieve optimality.

Second, previous studies have argued that decoding strategies that ignore noise correlations are

simpler than those taking noise correlations into account (Wu et al., 2001; Nirenberg et al., 2001;

Nirenberg and Latham, 2003; Latham and Nirenberg, 2005; Averbeck et al., 2006; Averbeck and

Lee, 2006; Ince et al., 2010; Oizumi et al., 2010). Even though the NI assumption simplifies the

probabilistic encoding model, optimal NI decoders may require more complex estimation algorithms

than those used in decoders constructed without the NI assumption. Other estimation algorithms may

be simpler but less efficient (Figure 7).

Third, our results do not directly support any qualitative claim about the nature of the decoded

information (Nirenberg et al., 2001). The amount of information extracted by NI decoders may para-

doxically depend on the noise correlations in the population response: In Figure 7, for example, the

amount of information extracted by the optimal NI decoder does depend on the amount of correlation
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ρ in the neural response. The extracted information may even exceed the sum of the informations

encoded individually by each neuron (Schneidman et al., 2003), regardless of whether surrogate NI

population responses occur or not in the real data (as shown in Figure 8). The solution to this paradox

goes beyond quantitative arguments, and requires to compare what sort of information (stimulus

features) is individually encoded by each neuron with that extracted by NI decoders (Eyherabide

and Samengo, 2010, and references therein).

Figure 8. The NI decoder can paradoxically extract more information than that encoded by individual neurons.
(a) The example shows the responses of two neurons R1 and R2 elicited by three stimuli S 1, S 2 and S 3. All
stimuli are equally likely. Response probabilities P(L, L|S 3), P(M,M|S 1), and P(H,H|S 2) are equal to α, and
response probabilities P(L,M|S 1), P(M, L|S 1), P(L,H|S 3), P(H, L|S 3), P(M,H|S 2), and P(H,M|S 2) are equal
to 0.5 − α/2, with α varying between 0 and 1. (b) The NI decoder is capable of extracting more information
than the sum of the information encoded by individual neurons for a wide range of response probabilities. This
effect is enhanced by the fact that the latter information is only an upper bound of the information conveyed
individually by the neurons in the population.

To conclude, our work provides a rigorous framework for understanding, both quantitatively and

qualitatively, the role of noise correlations in neural decoding. The quantities defined here allow one

to exactly quantify the trade-off between complexity and optimality of NI decoders, either in natural

situations or under artificial conditions (i.e. using long sequences of responses). This assessment

is fundamental for the development of computational algorithms, brain-machine interfaces, and neu-

roprosthetics. Our description provides the basis for understanding how the NI assumption (or any

other assumption during the decoding process) affects the amount and type of decoded information,

establishing, for the first time, a link between probabilistic decoding models and the neural code.

The framework is general enough to analyze the importance of noise correlations not only between

neurons in neural populations, but also between neural populations in different cortical areas, or more

recently, between cortical areas in different brains (Hari and Kujala, 2009; Babiloni and Astolfi, 2012).
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